Answer:
10.19 m
Explanation:
Water will rise to equalize the pressure inside and outside the tube.
The equation of pressure is given by

Where,
p = Pressure of air = 10⁵ N/m²
ρ = Density of water = 10³ kg/m³
g = Acceleration due to gravity = 9.81 m/s²
h = Height the water will rise

∴ The water will rise by 10.19 m.
A. an accelerating charged charged particle or changing magnetic fields
When light passes through one transparent medium to another transperent medium it bends and that beding of light is know as refraction of light !
Answer:
The magnitude of electron acceleration is

Explanation:
Given:
Distance from the wire to the field point
m
Speed of electron 
Current
A
For finding the acceleration,
First find the magnetic field due to wire,

Where 

T
The magnetic force exerted on the electron passing through straight wire,

N
From the newton's second law

Where
mass of electron
kg
So acceleration is given by,



Therefore, the magnitude of electron acceleration is
