Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem
Answer:
Your correct answer is A. 1,2,1,2
Explanation:
Please mark brainliest!
Answer:
The heat at constant pressure is -3,275.7413 kJ
Explanation:
The combustion equation is 2C₆H₆ (l) + 15O₂ (g) → 12CO₂ (g) + 6H₂O (l)
= (12 - 15)/2 = -3/2
We have;

Where R and T are constant, and ΔU is given we can write the relationship as follows;

Where;
H = The heat at constant pressure
U = The heat at constant volume = -3,272 kJ
= The change in the number of gas molecules per mole
R = The universal gas constant = 8.314 J/(mol·K)
T = The temperature = 300 K
Therefore, we get;
H = -3,272 kJ + (-3/2) mol ×8.314 J/(mol·K) ×300 K) × 1 kJ/(1000 J) = -3,275.7413 kJ
The heat at constant pressure, H = -3,275.7413 kJ.
Hey there!
Rocks and sand are nonliving. All organisms are living.
Living organisms have five characteristics. Living organisms respond to a stimulus, need energy, grow, reproduce, and get rid of wastes. All living organisms consist of cells.
Hope this helps! Have a Brainly day! :D
The grams of aluminum that are required to produce 3.5 moles of AlO3 in presence of excess O2 is calculated as below
write the equation for reaction
4 Al + 3O2 =2 Al2O3
by use of mole ratio between Al to Al2O3 which is 4 :2 the moles of Al
=3.5 x4/2 = 7 moles
mass of Al = moles / x molar mass
= 7 moles x27 g/mol =189 grams