Answer:

Explanation:
Hello,
In this case, since the given undergoing chemical reaction is correctly balanced, the reaction quotient is computed as well as the equilibrium constant but in terms of the given concentrations that are:

In such a way, the reaction quotient turns out:

Taking into account that carbon is not included since it is solid.
Best regards.
Answer:
Mass = 3.6 g
Explanation:
Given data:
Number of atoms of scandium = 4.77×10²² atoms
Mass of arsenic = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022× 10²³ is called Avogadro number.
one mole = 6.02×10²³ atoms
one mole × 4.77×10²² atoms / 6.02×10²³ atoms
0.08 mol
Mass of scandium
Mass = number of moles × molar mass
Mass = 0.08 mol × 45 g/mol
Mass = 3.6 g
Answer:
D
Explanation:
the charges need to balence out
so finding the LCM which is 12 we find we need 3x's
and 4 zs
so that makes the formula X3Z4 which is D
The correct answer is option B. The most dense phase of matter is the solid phase and the least dense are gases. However, there is an exception. Water is the exception. Solid water or ice is less dense than the liquid phase therefore it floats on liquid water.
Answer:
301.8 g
Explanation:
We prepare a solution with 200.4 g of water (solvent) and 101.42 g of salt (solute). The mass of the solution is equal to the sum of the mass of the solvent and the mass of the solute.
m(solution) = m(solute) + m(solvent)
m(solution) = 200.4 g + 101.42 g
m(solution) = 301.8 g (we round-off to one decimal according to the significant figures rules)