1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
4 years ago
11

An umbrella policy is designed to cover:

Physics
1 answer:
mojhsa [17]4 years ago
4 0
An umbrella policy is designed to cover D. MAJOR PERSONAL LIABILITY SUITS.

An umbrella insurance policy is extra liability insurance. It is designed to help protect you from major claims and lawsuits resulting to protecting your assets and future assets.

Umbrella policy provides additional liability coverage above the limits of your homeowners, auto, and boat insurance policies. When the liability of all this policies have been exhausted, the umbrella policy protection kicks in.

It also provides coverage on claims that are excluded by other policies.
You might be interested in
two point charges of magnitude 4.0 μc and -4.0 μc are situated along the x-axis at x1 = 2.0 m and x2 = -2.0 m, respectively. wha
user100 [1]

The electric potential at the origin of the xy coordinate system is negative infinity

<h3>What is the electric field due to the 4.0 μC charge?</h3>

The electric field due to the 4.0 μC charge is E = kq/r² where

  • k = electric constant = 9.0 × 10 Nm²/C²,
  • q = 4.0 μC = 4.0 × 10 C and
  • r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m

<h3>What is the electric field due to the -4.0 μC charge?</h3>

The electric field due to the -4.0 μC charge is E = kq'/r² where

  • k = electric constant = 9.0 × 10 Nm²/C²,
  • q' = -4.0 μC = -4.0 × 10 C and
  • r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m

Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is

E" = E + E'

= -2E

= -2kq/r²

<h3>What is the electric potential at the origin?</h3>

So, the electric potential at the origin is V = -∫₂⁰E".dr

= -∫₂⁰-2kq/r².dr

Since E and dr = dx are parallel and r = x, we have

= -∫₂⁰-2kqdxcos0/x²

= 2kq∫₂⁰dx/x²

= 2kq[-1/x]₂⁰

= -2kq[1/x]₂⁰

= -2kq[1/0 - 1/2]

= -2kq[∞ - 1/2]

= -2kq[∞]

= -∞

So, the electric potential at the origin of the xy coordinate system is negative infinity

Learn more about electric potential here:

brainly.com/question/26978411

#SPJ11

3 0
2 years ago
An automobile is sitting on a hill which is 20 m higher than ground level. Find the mass of the automobile if it contains 362,60
mr Goodwill [35]
M= ?
g=9.8 m/s (2)
h=20 m

Eg=362,600 J
Eg/mg

362,600 J/9.8 m/s (2) x 20 m
=1,850 m
6 0
3 years ago
A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end when it
Tems11 [23]

Answer:

5.4 ms⁻¹

Explanation:

Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.

L = length of the meter stick = 1 m

m = mass of the meter stick

w = angular speed of the meter stick as it hits the floor

v = speed of the other end of the stick

we know that, linear speed and angular speed are related as

v = r w\\w = \frac{v}{r}

h = height of center of mass of meter stick above the floor = \frac{L}{2} = \frac{1}{2} = 0.5 m

I = Moment of inertia of the stick about one end

For a stick, momentof inertia about one end has the formula as

I = \frac{mL^{2} }{3}

Using conservation of energy

Rotational kinetic energy of the stick = gravitational potential energy

(0.5) I w^{2} = mgh\\(0.5)(\frac{mL^{2} }{3}) (\frac{v}{L} )^{2} = mgh\\(0.5)(\frac{v^{2} }{3}) = gh\\(0.5)(\frac{v^{2} }{3}) = (9.8)(0.5)\\v = 5.4 ms^{-1}

7 0
4 years ago
Which of the following statements are true for magnetic force acting on a current-carrying wire in a uniform magnetic field? Che
qaws [65]

Answer:

The following statements are correct.

1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.

2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.

3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.

Wrong statements:

1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.

Explanation:

6 0
3 years ago
How can you use the density of an object to predict whether it will sink or float?
Bas_tet [7]

Answer:

Explanation:

If an object has a higher density than the fluid it is in (fluid can mean liquid or gas), it will sink. If it has a lower density, it will float. Density is determined by an object's mass and volume. If two objects take up the same volume, but have one has more mass, then it also has a higher density.

7 0
3 years ago
Read 2 more answers
Other questions:
  • What happens to momentum when two objects collide
    13·1 answer
  • Unless indicated otherwise, assume the speed of sound in air to be v = 344 m/s. A stationary police car emits a sound of frequen
    11·1 answer
  • True or false, As the frequency of an energy wave increases , so does its wavelength
    10·1 answer
  • Given that the mass of the Earth is 5.972 * 10^24 kg and the radius of the Earth is
    8·1 answer
  • One-dimensional motion
    9·2 answers
  • An object of mass 0.50 kg is transported to the surface of Planet X where the object's weight is measured to be 20 N. The radius
    14·1 answer
  • A person throws a baseball from height of 7 feet with an initial vertical velocity of 50 feet per second. Use the vertical motio
    6·2 answers
  • Hydrogen gas is maintained at 3 bars and 1 bar on opposite sides of a plastic membrane which is .3 mm thick. The temperature is
    5·1 answer
  • Please help me out i'm so depressed and such a failure
    10·1 answer
  • When unpolarized light is incident on a sheet of polarizing material with a transmission axis oriented vertically, what percenta
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!