Answer:
If by 1.5 MJ you mean 1.5E6 Joules then
W = P t = power X time
W / t = P power
P = 1.5E6 J / 600 sec = 2500 J / s
P = I V
a) I = 2500 J/s / (240 J/c) = 10.4 C / sec = 10.4 amps
b) Q = I t = 10.4 C / sec * 300 sec = 3120 Coulombs
c) E = P * t = 2500 J / sec * 100 hr * 3600 sec / hr = 9.0E8 Joules
Answer:
Work = F * s where s is the distance F moves
Since F is stationary, in this case, "no work" is done by either person
Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>
Answer:
3 m/s
Explanation:
We'll begin by calculating the change in displacement of the jogger. This can be obtained as follow:
Initial displacement (d₁) = 4 m
Final displacement (d₂) = 16 m
Change in displacement (Δd) =?
Δd = d₂ – d₁
Δd = 16 – 4
Δd = 12 m
Finally, we shall determine the determine the average velocity. This can be obtained as follow:
Change in displacement (Δd) = 12 m
Time (t) = 4 s
Velocity (v) =?
v = Δd / t
v = 12 / 4
v = 3 m/s
Thus, the average velocity of the jogger is 3 m/s