Answer:
μk = 0.26885
Explanation:
Conceptual analysis
We apply Newton's second law:
∑Fx = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
a= -0.9 m/s²,
g = 9.81 m/s² : acceleration due to gravity
W= 75 N : Block weight
W= m*g
m = W/g = 75/9.8= 7.65 kg : Block mass
Friction force : Ff
Ff= μk*N
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W-25 = 0
N = 75
+25
N= 100N
∑Fx = m*ax
20-Ff= m*ax
20-μk*100
= 7.65*(-0.90 )
20+7.65*(0.90) = μk*100
μk = ( 20+7.65*(0.90)) / (100)
μk = 0.26885
DIAMONDS are NOT rocks. Diamonds are minerals, rocks are made up of many different fragments of minerals.
Answer:
false
Explanation:
Because the sun has ultraviolet rays
Answer:
c 275 m
Explanation:
Given parameters:
Final velocity = 73.5m/s
Unknown:
Height of fall = ?
Solution:
Since the body is falling from rest, U = 0 or initial velocity is 0m/s. Then we use one of the kinematics equation to solve this problem.
V² = U² + 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
73.5² = 0² + (2 x 9.8 x h)
5402.25 = 19.6h
h = 275.6m
2 meters per second for 8 seconds
1.5 meters per second for 8 seconds
The average speed should be 1.8 or 1.7 but I think its 1.8