Answer:
The diameter of the hole increases
Explanation:
Metals expand and contract with temperature. Whenever metal is heated, it usually expands in relation to its thermal expansivity. This expansion leads to a slight increase in surface area.
Once the surface area of the metal changes, this means that the dimensions of the whole metal surface changed. As a result, the diameter of the hole drilled in the metal plate will change also. In our case, the diameter of the hole will increase.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value
Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M