Answer:
Δλ = 3*10⁻³ m.
Explanation:
- At any wave, there exists a fixed relationship between the speed of the wave, the wavelength, and the frequency, as follows:

where v is the speed, λ is the wavelength and f is the frequency.
- Rearranging terms, we can get λ from the other two parameters, as follows:

- Since v is constant for sound at 343 m/s, we can find the different wavelengths at different frequencies, as follows:


- The difference between both wavelengths, is just the difference between (3) and (4):

⇒ Δλ = 3*10⁻³ m.
There are NO true statements on the list you provided.
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.
Using the formula v=f times lambada
then v=the speed of light.
and f=what’s we’re looking for
and lambada=the wavelength.
so then you sub what you have (v and lambada) in the formula.
then multiply the frequency(f) by the given wavelength and then solve for f
Answer:
a) 
b)
parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
Explanation:
Given:
mass of the bee, 
charge acquired by the bee, 
a.
Electrical field near the earth surface, 
Now the electric force on the bee:
we know:




The weight of the bee:



Therefore the ratio :


b.
The condition for the bee to hang is its weight must get balanced by the electric force acing equally in the opposite direction.
So,



parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.