Answer:The lowest value of n that allows g orbitals to exist is 5.
The solution is as follows:
Important data:
*0.01 M solution = 0.01 moles <span>disodium ethylenediaminetetraacetate/ L solution
*1 L = 1000 mL
*Molar mass = 372/24 g/mol
Stoichiometric calculation:
0.01 mol/L * (1 L/1000 mL) * 500 mL * </span><span>372.24 g/mol = 1.8612 g
Therefore, you would need 1.8612 grams of </span>disodium ethylenediaminetetraacetate.
Answer:
as no. of protons is equals to the no. of electrons so, it is a neutral atom.
but, as Atomic No. = Mass No. - No. of neutrons
Atomic No. = No. of protons = 18
so, Mass No. = Atomic No. + No. of Neutrons= 18 + 20 = 38
so, correct option is C.
Explanation:
Answer:
M = 0.177
Explanation:
First, we have to find the molar mass of potassium iodine (KI).
K = 39.098
I = 126.904
Now, add these values together to get the molar mass of KI
39.098 + 126.904 = 166.0028
Now, it's time to do a grams to moles conversion.
35.0 g KI *
=
= 0.212 mol KI
Now, we can find the molarity of this solution.
Molarity (M) = 
M =
= 0.177 M
The molarity (M) of this solution is 0.177.