Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer
<u>Answer:</u> The atomic symbol of the given element is 
<u>Explanation:</u>
The general isotopic representation of an element is given as: 
where,
Z represents the atomic number of the element
A represents the mass number of the element
X represents the symbol of an element
For the given isotope: 130-iodine
Mass number = 130
Atomic number = 53
Hence, the atomic symbol of the given element is 
Answer:
B. CA, 14
Explanation:
Atoms of elements contain small particles known as electrons, neutrons, and protons. The nucleus of an atom is made up of neutrons and protons which are at the center of the atom. Electrons on the other hand surrounds the nucleus. Electron has negative charge while proton has a positive charge. The number of neutrons is equivalent to the number of protons . In addition, the number of protons is equal to mass number minus the number of electrons.
For the compound
, it can be broken down into
and
. Its ion has a mass of 34 and 18 electrons which means it has already lost 2 electrons.
Therefore:
For the given element, the number of electrons is 18+2 = 20 electrons.
The number of protons = 34 - 20 = 14.
And the number of neutrons is 14.
Only option B has the correct answer.
Answer : The molar mass of the solute would be low.
Explanation :
Formula used for depression in freezing point is:

where,
= change in freezing point
= freezing point of solution
= freezing point of water
i = Van't Hoff factor
= freezing point constant
m = molality
= mass of solute
= mass of solvent
= molar mass of solute
From the formula we conclude that, when the freezing point of the solution read incorrectly that is freezing point of the solution is lower than the true freezing point then this means that change in freezing point would be high and the molar mass of the solute would be low.
Hence, the molar mass of the solute would be low.
Solid water is completely clear