Answer:8.28 km
Explanation:
Given
First it drifts
2.5 km

Secondly it drifts
4.70 km

After that it drifted along east direction 5.1 km

After that it drifts
7.2 km

After that it drifts
2.8 km

=
+![\left [ 2.5sin45-4.7sin60-7.2sin55+2.8sin5\right ]\hat{j}](https://tex.z-dn.net/?f=%5Cleft%20%5B%202.5sin45-4.7sin60-7.2sin55%2B2.8sin5%5Cright%20%5D%5Chat%7Bj%7D)


for direction

south of east
Answer:
H₀ = 1.6 x 10⁻¹⁸ s⁻¹
Explanation:
The Hubble's Constant can be found by the following formula:

where,
H₀ = Hubble's Constant = ?
v = speed of galaxy = 30000 km/s = 3 x 10⁷ m/s
D = Distacance = 600 Mpc = (6 x 10⁸ pc)(3.086 x 10¹⁶ m/1 pc)
D = 18.52 x 10²⁴ m
Therefore,

<u>H₀ = 1.6 x 10⁻¹⁸ s⁻¹</u>
Answer:
Average speed = 46.67 m/s
Explanation:
Given that the time taken in covering first 1000 m = 25 seconds.
The time taken in covering next 2.5 km = 50 seconds.
Total distance covered = 1000 m + 2500 m = 3500 m
Total time taken = 25+50=75 seconds
Average speed = Total distance covered / total time taken
= 3500/75 = 46.67 m/s
Practically yes
So
If mass is more output may come less so it affects the efficiency practically
But thepritically it doesn't
Answer:
A. The particle model, because only high-energy frequencies of light can remove electrons .
Explanation:
Each photon of blue light has higher energy than each photon of red light has . So when each photon strikes each electron , it gets ejected . But the photon of red light has not sufficient energy to eject electron . Once the photon of red light strikes the electron , the energy is wasted off . Energy of photon can not be accumulated . Thus photon behaves like particle .