Answer:
partial pressure of gas D Pd = 15.5 kPa
Explanation:
As per the Dalton's law of partial pressure, in a mixture, pressure exerted by each gas when summed gives the total partial pressure exerted by mixture.
P(Total) = P1+P2+P3.....
Given P(Total) = 35.7 kPa
Partial pressure of gas A Pa = 7.8 kPa
Partial pressure of gas B Pb = 3.7 kPa
Partial pressure of gas C Pc = 8.7 kPa
There, Partial pressure of gas D Pd = P(Total) -(Pa+Pb+Pc)
Pd = 35.7-(7.8+3.7+8.7) = 35.7-20.2 kPa = 15.5 kPa
Therefore, partial pressure of gas D Pd = 15.5 kPa
Answer:
5.8μg
Explanation:
According to the rate or decay law:
N/N₀ = exp(-λt)------------------------------- (1)
Where N = Current quantity, μg
N₀ = Original quantity, μg
λ= Decay constant day⁻¹
t = time in days
Since the half life is 4.5 days, we can calculate the λ from (1) by substituting N/N₀ = 0.5
0.5 = exp (-4.5λ)
ln 0.5 = -4.5λ
-0.6931 = -4.5λ
λ = -0.6931 /-4.5
=0.1540 day⁻¹
Substituting into (1) we have :
N/N₀ = exp(-0.154t)----------------------------- (2)
To receive 5.0 μg of the nuclide with a delivery time of 24 hours or 1 day:
N = 5.0 μg
N₀ = Unknown
t = 1 day
Substituting into (2) we have
[5/N₀] = exp (-0.154 x 1)
5/N₀ = 0.8572
N₀ = 5/0.8572
= 5.8329μg
≈ 5.8μg
The Chemist must order 5.8μg of 47-CaCO3
Answer:
<h2>1.54 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>1.54 mL</h3>
Hope this helps you
Gasses is the one because gas and gasses
I'd say b, but i'm not 100 percent sure.<span />