1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
10

A coil is wrapped with 300 turns of wire on the perimeter of a circular frame (radius = 8.0 cm). Each turn has the same area, eq

ual to that of the frame. A uniform magnetic field is turned on perpendicular to the plane of the coil. This field changes at a constant rate from 20 to 80 mT in a time of 20 ms. What is the magnitude of the induced emf in the coil at the instant the magnetic field has a magnitude of 50 mT?
Physics
1 answer:
TiliK225 [7]3 years ago
6 0

Answer:

Approximately 18 volts when the magnetic field strength increases from \rm 20\; mT to \rm 80\;mT at a constant rate.

Explanation:

By the Faraday's Law of Induction, the EMF \epsilon that a changing magnetic flux induces in a coil is:

\displaystyle \epsilon = N \cdot \frac{d\phi}{dt},

where

  • N is the number of turns in the coil, and
  • \displaystyle \frac{d\phi}{dt} is the rate of change in magnetic flux through this coil.

However, for a coil the magnetic flux \phi is equal to

\phi = B \cdot A\cdot \cos{\theta},

where

  • B is the magnetic field strength at the coil, and
  • A\cdot \cos{\theta} is the area of the coil perpendicular to the magnetic field.

For this coil, the magnetic field is perpendicular to coil, so \theta = 0 and A\cdot \cos{\theta} = A. The area of this circular coil is equal to \pi\cdot r^{2} = \pi\times 8.0\times 10^{-2}\approx \rm 0.0201062\; m^{2}.

A\cdot \cos{\theta} = A doesn't change, so the rate of change in the magnetic flux \phi through the coil depends only on the rate of change in the magnetic field strength B. The size of the magnetic field at the instant that B = \rm 50\; mT will not matter as long as the rate of change in B is constant.

\displaystyle \begin{aligned} \frac{d\phi}{dt} &= \frac{\Delta B}{\Delta t}\times A \\&= \rm \frac{80\times 10^{-3}\; T- 20\times 10^{-3}\; T}{20\times 10^{-3}\; s}\times 0.0201062\;m^{2}\\&= \rm 0.0603186\; T\cdot m^{2}\cdot s^{-1}\end{aligned}.

As a result,

\displaystyle \epsilon = N \cdot \frac{d\phi}{dt} = \rm 300 \times 0.0603186\; T\cdot m^{2}\cdot s^{-1} \approx 18\; V.

You might be interested in
A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end when it
Tems11 [23]

Answer:

5.4 ms⁻¹

Explanation:

Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.

L = length of the meter stick = 1 m

m = mass of the meter stick

w = angular speed of the meter stick as it hits the floor

v = speed of the other end of the stick

we know that, linear speed and angular speed are related as

v = r w\\w = \frac{v}{r}

h = height of center of mass of meter stick above the floor = \frac{L}{2} = \frac{1}{2} = 0.5 m

I = Moment of inertia of the stick about one end

For a stick, momentof inertia about one end has the formula as

I = \frac{mL^{2} }{3}

Using conservation of energy

Rotational kinetic energy of the stick = gravitational potential energy

(0.5) I w^{2} = mgh\\(0.5)(\frac{mL^{2} }{3}) (\frac{v}{L} )^{2} = mgh\\(0.5)(\frac{v^{2} }{3}) = gh\\(0.5)(\frac{v^{2} }{3}) = (9.8)(0.5)\\v = 5.4 ms^{-1}

7 0
3 years ago
A parallel plate capacitor fully charged to voltage V is connected to the battery (the voltage on the plates remains fixed). If
Papessa [141]

Charge will decreases.

A parallel plate capacitor when it is fully charged to voltage V is given as:

                    C = Q/V

The capacitance of parallel plate capacitor with two plates of Area A separated by distance d and no dielectric material between plates is

                    C = ε₀ A /d

since from above equation it shows C is proportional to Q and also C is inversely proportional to distance d.

So, ATQ when d increases C will decrease which in result decreases charge on the capacitor.

Thus,  Charge will decrease.

Learn more about capacitance here:

     brainly.com/question/17115454

          #SPJ4

7 0
2 years ago
Darren filled ocean water, fresh water, bottled water, and tap water into four different containers. He then dropped identical g
elena-14-01-66 [18.8K]
I would say container 1
6 0
3 years ago
Read 2 more answers
A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 11.2 rad/s in 3.07 s. (a) f
Hitman42 [59]
(a) The angular acceleration of the wheel is given by
\alpha =  \frac{\omega_f - \omega_i }{t}
where \omega_i and \omega_f are the initial and final angular speed of the wheel, and t the time.

In our problem, the initial angular speed is zero (the wheel starts from rest), so the angular acceleration is
\alpha =  \frac{(11.2 rad/s) - 0}{3.07 s} =3.65 rad/s^2

(b) The wheel is moving by uniformly rotational accelerated motion, so the angle it covered after a time t is given by
\theta (t) = \omega_i t +  \frac{1}{2} \alpha t^2
where \omega_i = 0 is the initial angular speed. So, the angle covered after a time t=3.07 s is
\theta=  \frac{1}{2}  \alpha t^2 =  \frac{1}{2}(3.65 rad/s^2)(3.07 s)^2 = 17.2 rad
6 0
3 years ago
Who will most likely have the lowest credit score. PLEASE HELP MEEE
dimulka [17.4K]

Answer:

A. usually 3 cards a year means you have little or no credit I believe

4 0
2 years ago
Other questions:
  • regrine falcons frequently grab prey birds from the air. Sometimes they strike at high enough speeds that the force of the impac
    9·1 answer
  • What is the timeline for the law of conservation of energy
    5·1 answer
  • Which statement best describes resistance? Resistance is
    7·2 answers
  • CALCULATE: Ken is a bicyclist. He is moving from point C to point D up a hill. His starting velocity is 8m/s east and 1 second l
    10·1 answer
  • An airplane travels 80 m/s as it makes a horizontal circular turn which has a 0.80-km radius. What is the magnitude of the resul
    12·1 answer
  • The drawing shows a plot of the output emf of a generator as a function of time t. The coil of this device has a cross-sectional
    15·1 answer
  • If the position of a particle on the x-axis at time t is −5t2, then the average velocity of the particle for 0 ≤ t ≤ 3 is
    11·1 answer
  • Which color lined on the graph shows the population reaching, but not surpassing, carring capacity?
    13·2 answers
  • R=70<br> R-40<br> M<br> 120V<br> R, 90<br> W
    8·1 answer
  • Turning on and listening your favorite TV show is an example of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!