1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
15

A car moves with constant velocity along a straight road. Its position is x1 = 0 m at t1 = 0 s and is x2 = 66 m at t2 = 6.0 s .

Answer the following by considering ratios, without computing the car's velocity.(Express your answer to two significant figures and include the appropriate units.) 1.What is the car's position at t = 3.0 s ? 2.What will be its position at t = 24 s ?
Physics
1 answer:
UNO [17]3 years ago
7 0

Answer: 1. 33, 2. 264

Explanation: 66m= 6s so, to find the position at 3s you just need to take 66/2 = 33m cause 3 is half of 6. & for 2 you will take 66x4= 264m cause it took 4s multiply by the original 6s to get 24s. Answer: 1 is 33m and 2 is 264m

You might be interested in
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low mass sail and the ener
Stella [2.4K]

Answer:

Reflective

Explanation:

The radiation pressure of the wave that totally absorbed is given by;

P_{abs}= \frac{I}{C}

and While the radiation pressure of the wave totally reflected is given by;

P_{ref}= \frac{2I}{C}

Now compare the two-equation you can clearly see that the pressure due to reflection is larger than absorption therefore the sail should be reflective.

6 0
3 years ago
A river 800m wide flows at the rate of 5km/h . A swimmer who can swim at 10km/h in still water wants to cross the river straight
LuckyWell [14K]

Answer:

At an angle of 30^{\circ}

Explanation:

Assume the river flows from East to West so for the swimmer to cross across it, assume he crosses it from West to East.

The resultant speed will be given by

R= \sqrt {10^{2}-5^{2}=\sqrt {75}\approx 8.66 km/h\\Direction=sin^{-1}\frac {5}{10}\approx 30^{\circ}

6 0
3 years ago
An electron with charge −e and mass m moves in a circular orbit of radius r around a nucleus of charge Ze, where Z is the atomic
shepuryov [24]

Answer:

v=\sqrt{\frac{kZe^2}{mr}}

Explanation:

The electrostatic attraction between the nucleus and the electron is given by:

F=k\frac{(e)(Ze)}{r^2}=k\frac{Ze^2}{r^2} (1)

where

k is the Coulomb's constant

Ze is the charge of the nucleus

e is the charge of the electron

r is the distance between the electron and the nucleus

This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:

F=m\frac{v^2}{r} (2)

where

m is the mass of the electron

v is the speed of the electron

Combining the two equations (1) and (2), we find

k\frac{Ze^2}{r^2}=m\frac{v^2}{r}

And solving for v, we find an expression for the speed of the electron:

v=\sqrt{\frac{kZe^2}{mr}}

6 0
3 years ago
You travel 85 miles in 2 hours, you then travel 75 miles in 1.5 hours. After a 0.5 hour rest break you then travel 55 miles in 1
Lera25 [3.4K]
Total 215 miles in 5 hours .hope it helps
8 0
3 years ago
A block has a volume of 0.09 m3 and a density of 4,000 kg/m3. What's the force of gravity acting on the block in water?
12345 [234]

                                       Density = (mass) / (volume)

                                4,000 kg/m³ = (mass) / (0.09 m³)

Multiply each side
by  0.09 m³ :           (4,000 kg/m³) x (0.09 m³) = mass

                                 mass = 360 kg .

Force of gravity = (mass) x (acceleration of gravity)

                           = (360 kg) x (9.8 m/s²)

                           = (360 x 9.8)  kg-m/s²

                           =   3,528 newtons . 

That's the force of gravity on this block, and it doesn't matter
what else is around it.  It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).

Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity.  That's the buoyant force due to the displaced water.

The block is displacing 0.09 m³ of water.  Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water.  The weight
of that water is  (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.

So while it's in the water, the block seems to weigh

       (3,528  -  882) = 2,646 newtons  (about 595.2 pounds) .

But again ... it's not correct to call that the "force of gravity acting
on the block in water".  The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
5 0
3 years ago
Read 2 more answers
Other questions:
  • A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
    9·1 answer
  • What is the system's potential energy when its kinetic energy is equal to 34e?
    14·1 answer
  • A child slides down a frictionless playground slide from a height of 2.1 m above the ground. If she starts with an initial speed
    12·1 answer
  • an explanation of conduction(science explanation) pleases helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
    10·1 answer
  • Which object has the larger magnitude of its momentum?
    15·1 answer
  • An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the
    12·1 answer
  • Which statement best describes the difference between acceleration and velocity?
    15·1 answer
  • Pls give me an example of newton's 1 ,2 ,3 law of motion pls this is due tomorrow
    10·1 answer
  • Please help it’s multiple choice
    7·1 answer
  • A current is detected in a photoelectric effect experiment when an electrode is illuminated with green light. Will a current als
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!