Answer:
a. 0.4544 N
b. 
Explanation:
For computing the normality and molarity of the acid solution first we need to do the following calculations
The balanced reaction



= 0.27264 g


= 0.006816 mol
Now
Moles of
needed is

= 0.003408 mol


= 0.333984 g
Now based on the above calculation
a. Normality of acid is


= 0.4544 N
b. And, the acid solution molarity is


= 0.00005112
=
We simply applied the above formulas
Answer:
ΔT= 11.94 °C
Explanation:
Given that
mass of water = 10 kh
Time t= 15 min
Heat lot from water = 400 KJ
Heat input to the water = 1 KW
Heat input the water= 1 x 15 x 60
=900 KJ
By heat balancing
Heat supply - heat rejected = Heat gain by water
As we know that heat capacity of water


Now by putting the values
900 - 400 = 10 x 4.187 x ΔT
So rise in temperature of water ΔT= 11.94 °C
Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Answer:
The following statements are true:
A. For flows over a flat plate, in the laminar region, the heat transfer coefficient is decreasing in the flow direction
C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface
E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6.
Select ALL statements that are TRUE
B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant
D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed
Explanation:
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft