Use the equation for density :
Density = mass / volume
Density = 120 / 480
Density = 0.25
Answer:
Energy added to solid water will turn it into liquid water; add energy into liquid water and it will be turned into water vapor.
Explanation:
Adding energy is basically adding heat; the more heat, the more excited the molecules of H2O gets. In solid water, the molecules aren't really moving because they don't have a lot of energy, so it is solid. In liquid water (which is water in room temperature), it has a medium amount of energy; the molecules aren't stuck together but it isn't completely dispersed, so it is in liquid form. However, in water vapor, the energy becomes very high and the molecules are excited. The hydrogen bonds holding the molecules together break and the water is released as a vapor.
Answer:
Explanation:
Then, multiply the number of moles of Na by the conversion factor 6.02214179×1023 atoms Na/ 1 mol Na, with 6.02214179×1023 atoms being the number of atoms in one mole of Na (Avogadro's constant), which then allows the cancelation of moles, leaving the number of atoms of Na.Aug 15, 2020
Using dimensional analysis, we can find the moles of strontium by comparing the mass of strontium to it's atomic mass.
You can find the atomic mass of Sr on the periodic table:
Atomic Mass Sr = 87.62g/mol
In case you are not familiar, dimensional analysis works like this:
(what we know) x (conversion factor) = what we are looking for
The conversion factor compares the units of what we know to the units of what we are looking for. In this case, the conversion factor is:
1 mol/87.62g
The important thing to note about the conversion factor is that you want to be able to cancel out the units of your given measurement (in this case, it is the mass)
So, our full solution will be:
moles Sr = (175.24 g)x(1 mol/87.62 g)
(cancel out the mass units)
moles Sr = 175.24 x 1 mol/87.62
= 2.00 mol Sr
Hope this helped you!