10, 11 and 14:
speed = (frequency)x(wavelength)
12: wavelength=(speed)/(frequency)
13 and 15:
frequency = (speed) / (wavelength)
Answer:
1.53 g
Explanation:
Given,
Initial speed = 30 m/s
Final speed = 0 m/s
Period of stretch, t = 2 s
average deceleration = ?
we know


a = -15 m/s²
Deceleration of the jumper = 15 m/s²
Deceleration in terms of g


Hence, the deceleration of the jumper is equal to 1.53 g
Answer:
The final velocity is 28.14 m/s
Yes the angle of projection matters
Explanation:
Given;
initial velocity of the water balloon, u = 20 m/s
height of the building, h = 20 m
let the final speed of the ball when it hits the ground = v
The final speed is calculated as follows;
v² = u² + 2gh
v² = (20)² + 2(9.8)(20)
v² = 400 + 392
v² = 792
v = √792
v = 28.14 m/s
Yes the angle matters, if the balloon had been dropped at a certain angle, the final velocity would have been estimated using the following formula;

where;
θ is the angle of projection, which accounts for the vertical component of the velocity.
Spinning a marshmallow over a fire is effective maybe if you hang it over the fire and heat it up equally on each side