The pressure at the depth h in the ocean is given by (Stevin's law)

where

is the atmospheric pressure
and

is the pressure exerted by the column of water of height h=4267 m, with

being the water density and

.
Substituting, we find

We want to convert this into atmospheres: we know that 1 atm corresponds to the atmospheric pressure at sea level, so

, therefore we just need to divide by this number:
Answer:


Explanation:
Usando la ley de Hook tenemos:

Solving it for k we have:



Usando la misma ecuación y sabiendo k tenemos:



Espero esto te ayude!
It is the 'crest' part that the green arrow is identifying.
There must be a centripetal force to move the object move in a curve path.
Answer:
3.14 × 10⁻⁴ m³ /s
Explanation:
The flow rate (Q) of a fluid is passing through different cross-sections remains of pipe always remains the same.
Q = Area x velocity
Given:
Diameters of 3 sections of the pipe are given as
d1 = 1.0 cm, d2 = 2.0 cm and d3 = 0.5 cm.
Speed in the first segment of the pipe is
v1 = 4 m/s.
From the equation of continuity the flow rate through different cross-sections remains the same.
Flow rate = Q = A1 v1 = A2 v2 = A3 v3.
Q = A1v1
=π/4 d²1 v1 = π/4 * 0.01² ×4.0 m³/s = 3.14 × 10⁻⁴ m³ /s