Answer:
Explanation: Here we have given a direct equation . There for no need to worry .
P = I²×R
P = (12)² ×100
P = 14400W = 14.4 kW
For second one
P = I² ×R
200 = I²×150
I = √200/150
I = 1.15 A
Answer:
One of the best candidates for a black hole is found in the binary system called A0620-0090. The two objects in the binary system are an orange star, V616 Monocerotis, and a compact object believed to be a black hole. The orbital period of A0620-0090 is 7.75hours, the mass of V616 Monocerotis is estimated to be .67 times the mass of the sun, and the mass of the black hole is estimated to be 3.8 times the mass of the sun. Assuming that the orbits are circular, find the radius of the orbit of the orange star.
Explanation:
Answer:
D. 48.985 N
Explanation:
Newton's second law states that:

which means that the net force acting on an object is equal to the product between the object's mass and its acceleration.
The equation of the forces for the briefcase in the elevator therefore is given by:

where
N is the normal reaction exerted on the briefcase
(mg) is the weight of the briefcase, with
m = 4.5 kg being its mass
g = 9.8 m/s^2 is the acceleration of gravity
a = 1.10 m/s^2 is the acceleration
Here we chose upward as positive direction.
Solving for N, we find the normal force:

So the closest answer is
D. 48.985 N
Answer:
a
10.6 m/s²
Explanation:
Since F = ma (Force = mass * acceleration), acceleration would be...
a = F/m
a = 302 N/28.6
a
10.6 m/s²
==> The total mass resting on the table is (5 kg + 3 kg) = 8 kg.
==> The total weight of that mass is (8 kg) x (9.8 m/s) = 78.4 newtons
==> The boxes are stacked. So the table doesn't know if the weight on it is coming from one box, 2 boxes, 3 boxes, or 100 boxes in a stack. The table only knows that there is a downward force of 78.4 newtons on it.
==> The table stands in a Physics classroom, and it soaks up everything it hears there. It knows that every action produces an equal and opposite reaction, and that forces always occur in pairs.
Ever since the day it was only a pile of lumber out behind the hardware store in the rain, the table has known that in order to maintain the good reputation of tables all over the world, it must resist the weight of anything placed upon it with an identical upward force. This is the normal thing for all good tables to do, up to the ultimate structural limit of their materials and construction, and it is known as the "normal force".
So the table in your question provides a normal force of 78.4 newtons. (d)