Correct me if I'm wrong, anyone who is more informed on this than I am, but wouldn't it be because of the magnetic fields and whatnot? The longer I think on it, the more I feel like I'm wrong, so don't take my word for it 100%
Answer:
C. 100.7 amu
Explanation:
Isotopes of an element are atoms of an element with the same atomic number but different atomic masses. Each atomic mass of an isotope is known as an isotopic mass. An element that exhibits isotope, that is, that have two or more isotopes has a relative atomic mass that is not a whole number.
Relative atomic mass of X is the sum of the products of the relative abundances of each isotope and its isotopic mass.
For Isotope ¹⁰⁰X: 30% × 100 = 30 amu
For Isotope ¹⁰¹X: 70% × 101 = 70.7 amu
Relative atomic mass of X = (30 + 70.7) amu = 100.7 amu
Therefore, the approximate atomic mass of X is 100.7 amu
Answers are:
Catabolism:
- g<span>enerally exergonic (spontaneous): In this reactions energy is released.
- </span><span>convert NAD+ to NADH. Electrons and protons released in reactions are attached to NAD+.
- </span><span>generation of ATP. ATP is synthesis from ADP.
- </span><span>convert large compounds to smaller compounds. Foe example starch to monosaccaharides.
Anabolism:
</span><span>- convert NADPH to NADP+. Protons and electrons are used to make chemical bonds.
</span>- <span>convert small compounds to larger compounds.</span>
The complete question is: Match the following; Disulfide BondsA. Covalent interactions not found in all proteins.Peptide BondsB. Covalent interactions found in all proteins.Long-range interactionsC. Non-covalent interaction formed primarily on the interior of water-soluble proteins.Hydrophobic coreD. Covalent or non-covalent interactions formed b/w amino acid far from each other in primary structure.
The answer
Disulfide Bonds (Covalent interactions not found in all proteins.)
Peptide Bonds (Covalent interactions found in all proteins.)
Long-range interactions (Covalent or non-covalent interactions formed b/w amino acid far from each other in primary structure.)
Hydrophobic core. (Non-covalent interaction formed primarily on the interior of water-soluble proteins.)
Explanation:
The phrases have been given the right meaning enclosed in a parentheses. The should be matched accordingly as presented.