Answers that apply include
- Energy is transferred through vibrating particles
- An ocean wave moving through water is an example of a mechanical wave
- A longitudinal wave is a type of mechanical wave.
- A transverse wave is a type of mechanical wave
Mechanical waves can't pass through vacuum like electromagnetic waves because t depends on the transfer of energy between particles of matter (matter that has inertia and elasticity). This energy propagates in the same direction as the wave. Another example of mechanical energy is sound. In addition to longitudinal and transverse waves, another type of mechanical wave is surface waves.
Snell's law states that:
n1 Sin∅1 = n2 Sin ∅2
Where, medium 1 with (n1 = 1.33) is water and medium 2 with (n2 = 1) is the air, ∅1 = 90-50 = 40°
Therefore,
Sin ∅2 = n1/n2 *Sin ∅1 = 1.33/1 *Sin 40 = 0.4833=> ∅1 = Sin ^- (0.4833) = 28.9 °
The fisherman the sun at 61.1° (90-∅2) above the horizontal.
The decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot bind to another atom, which is why hydrogen has a single atom.
The hydrogen molecule is a form that two hydrogen atoms share their electrons decreasing the total energy of the molecule, this bond has a covalent and hydrogen bonding characteristic.
In a stellar explosion, the energy released increases the energy of the hydrogen atom, for which we have two possibilities:
- Its electron is lost, so we are in a single proton, in the case of structures where the proton and the elector are
- The hydrogen atom remains but the energy of the atom is very high so the kinetic energy of the electron prevents the electron from being shared by the other atom and the molecule cannot be formed.
When the atoms are thrown into space, the separation between them is so high that it does not allow electrons to be shared and molecules cannot be formed either.
In conclusion, the decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot join another atom, which is why the hydrogen has only one atom.
Learn more about the Hydrogen atom here:
brainly.com/question/22464200