Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
I believe your answer should be C. Speed.
This equation is used in nuclear medicine. Nuclear medicine is the branch of medicine that deals with the use of radioactive substances in research, diagnosis, and treatment.
<span>
In physics, this equation is generally used in the nuclear physics. </span><span>E = mc^2 gives the energy release during a nuclear reaction.</span><span>
</span>
Answer:
Explanation:
Using the equation of motion v² = u²+2as
v is the final velocity = 40m/s
u is the iniyail velocity 0m/s
a is the acceleration
s is the displacement
Substituting in the formula;
40² = 0²+2a(50)
1600 = 100a
Divide both sides by 100
100a/100 = 1600/100
a = 16
Hence the car acceleration is 16m/s²