Answer:
3.88m/s
Explanation:
Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and 2 are the initial velocities
v is the final velocity
Given
m1 = 64kg
u1 = 4.2m/s
m2 = 25kg
u2 = 3.2m/s
Required
Final velocity v
Substitute the given values into the formula
64(4.2)+25(3.2) = (65+25)v
268.8+80 = 90v
348.8 = 90v
v = 348.8/90
v = 3.88m/s
Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s
To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

Where,
= Mass of each object
= Initial velocity of each object
= Final Velocity
Since the receiver's body is static for the initial velocity we have that the equation would become



Therefore the velocity right after catching the ball is 0.0975m/s
Answer:
The bike would have more acceleration
Explanation:
Accourding to newtons first law a force is equal to its mass multiplied by its acceleration (f=ma) therefore an object with a higher mass compared to an object with a lower mass would experience less acceleration.
Eg.
F=50N
Motorbike M=200kg
F=ma
50=200 x a
50/200=a
0.25m/s/s =a
Bike M=35kg
F=ma
50=35 x a
50/35= a
1.43m/s/s=a
The granite would be older. As millions of years go by, rocks are affected by weathering and erosion. These processes break down rocks and scatter them. Rocks are broken down into sediments, which mix with other layers, which could have been the reason how the layer of sandstone contains the small fragments of granite.