-- when you cool them, their electrical resistance decreases. -- If you make them even colder, their resistance decreases more. -- If you make them even colder, their resistance decreases more. -- If you make them even colder, their resistance decreases more.
-- If you keep making them colder, their resistance keeps decreasing, but it never completely disappears, no matter how cold you make them.
But with a few surprising substances, called 'superconductors' . . .
-- when you cool them, their electrical resistance decreases. -- If you make them even colder, their resistance decreases more. -- If you make them even colder, their resistance decreases more. -- If you make them even colder, their resistance decreases more.
-- If you keep making them colder, then suddenly, at some magic temperature, their resistance COMPLETELY disappears. It doesn't just become small, and it doesn't just become too small to measure. It becomes literally totally and absolutely ZERO.
If you start a current flowing in a superconducting wire, for example, you can connect the ends of the wire together, and the current keeps flowing around and around in it, for months or years. As long as you keep the loop cold enough, the current never decreases, because the superconducting wire has totally ZERO resistance.
Did somebody say "What's this good for ? What can you do with it ?"
1). Every CT-scan machine and every MRI machine needs many powerful magnets to do its thing. They are all electromagnets, with coils of superconducting wire, enclosed in containers full of liquid helium. Yes, it's complicated and expensive. But it turns out to be simpler and cheaper than using regular electromagnets, with coils of regular plain old copper wire, AND the big power supplies that would be needed to keep them going.
2). Resistance in wire means that when current flows through it, energy is lost. The long cables from the power-generating station to your house have resistance, so energy is lost on the way from the generating station to your house. That lost energy is energy that the electric company can't sell, because they can't deliver it to customers.
There are plans to build superconducting cables to carry electric power from the producers to the customers. The cables will be hollow pipes, with liquid helium or liquid hydrogen inside to keep them cold, and something on the outside to insulate them from the warmth outside. Yes, they'll be complicated and expensive. But they'll have ZERO resistance, so NO energy will be lost on its way from the generating stations to the customers. The power companies think they can build superconducting 'transmission lines' that will cost less than the energy that's being lost now, with regular cables.
Take the atomic mass of K = 39.1, O =16.0, P = 31.0
no. of moles = mass / molar mass
no. of moles of K3PO4 used = 4.79 / (39.1x3 + 31 + 16x4)
= 0.02256 mol
From the equation, the mole ratio of KOH : K3PO4 = 3 :1,
meaning every 3 moles of KOH used, produces 1 mole of K3PO4.
So, using this ratio, let the no. of moles of KOH required to be y.
y = 0.02256 x3
y = 0.0677 mol
If you don't find exactly 0.677 moles as one of the options, go for the closest one. A very slight error may occur because of taking different significant figures of atomic masses when calculating.
Nuclear fission is a nuclear reaction or a radioactive decay where nucleus of atom split into smaller ligher nuclei.
Nuclear fission is exothermic reaction which release large amounts of energy (electromagnetic radiation or as kinetic energy, which heat reactors where fission reaction take place).