A 1.5 kg bird is gliding at a height of 12 m with a speed of 3.8m/s. The kinetic energy of the bird is 10.83 joules.
Explanation:
Kinetic energy can be defined as,The kinetic energy (KE) of an object is the energy that the object possesses due to its motion.
The Kinetic energy can be calculated by using formula,
Kinetic Energy: KE = 1/2 (mv 2)
Where, m = Mass, v = Velocity.
Here in this case the bird mass is 1.5kg and is gliding with velocity 3.8m/s
hence, KE= 1/2*(1.5)×(3.8)^2
=0.5×1.5×3.8×3.8
=10.83Joules
Answer:
from the positive end of the battery through the capacitor through the resistors to the negative end...
Current flows from higher potential (+) to lower potential (-)..
Answer:
Explanation:
b) Gravity reduces the initial upward velocity to zero in a time of
t = v/g = 40/10 = 4 s
a) h = v₀t + ½gt² = 40(4) + ½(-10)4² = 80 m
or
v² = u² + 2as
h = (0² - 40²) / 2(-10) = 80 m
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.