1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
4 years ago
6

(3) What makes the Boxer engine balance so well?

Engineering
1 answer:
lord [1]4 years ago
5 0

Answer:

Just like two boxing athletes competing in a match, the boxer engine works similarly. The horizontally positioned pistons inside the engine create a better balance with their side-to-side motion as compared to V-shaped engines.

Explanation:

You might be interested in
TWO SENTENCES!!! What is something that you have used today that was designed by an engineer? What parts were designed by an eng
svetlana [45]
Cars, houses, Devices. :)
6 0
3 years ago
Read 2 more answers
A two-dimensional flow field described by
Oduvanchick [21]

Answer:

the answer is

Explanation:

<h2>  We now focus on purely two-dimensional flows, in which the velocity takes the form </h2><h2>u(x, y, t) = u(x, y, t)i + v(x, y, t)j. (2.1) </h2><h2>With the velocity given by (2.1), the vorticity takes the form </h2><h2>ω = ∇ × u = </h2><h2> </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y </h2><h2>k. (2.2) </h2><h2>We assume throughout that the flow is irrotational, i.e. that ∇ × u ≡ 0 and hence </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y = 0. (2.3) </h2><h2>We have already shown in Section 1 that this condition implies the existence of a velocity </h2><h2>potential φ such that u ≡ ∇φ, that is </h2><h2>u = </h2><h2>∂φ </h2><h2>∂x, v = </h2><h2>∂φ </h2><h2>∂y . (2.4) </h2><h2>We also recall the definition of φ as </h2><h2>φ(x, y, t) = φ0(t) + Z x </h2><h2>0 </h2><h2>u · dx = φ0(t) + Z x </h2><h2>0 </h2><h2>(u dx + v dy), (2.5) </h2><h2>where the scalar function φ0(t) is arbitrary, and the value of φ(x, y, t) is independent </h2><h2>of the integration path chosen to join the origin 0 to the point x = (x, y). This fact is </h2><h2>even easier to establish when we restrict our attention to two dimensions. If we consider </h2><h2>two alternative paths, whose union forms a simple closed contour C in the (x, y)-plane, </h2><h2>Green’s Theorem implies that   </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2></h2><h2></h2>
5 0
3 years ago
A smooth concrete pipe (1.5-ft diameter) carries water from a reservoir to an industrial treatment plant 1 mile away and dischar
Kamila [148]

ANSWER:

Q = 0.17ft3/s

EXPLANATION: since the water runs downhill on a 1:100 slope, that means the flow is laminar.

Using poiseuille equation:

Q = (π × D^4 × ∆P) ÷ (128 × U × ∆X)

Q is the volume flow rate.

π is pie constant value at 3.142

D is the diameter of the pipe

∆P is the pressure drop

U is the viscosity

∆X is the length of the pipe or distance of flow.

Form the question, we are to determine U then Find Q

Therefore;

D = 1.5ft

∆P = 1pa since the minor losses are negligible.

∆X = 1mile = 5280ft.

STEP1: FIND U

Viscosity is a function of the temperature of the liquid. An increase in temperature increases the viscosity of the liquid.

We know that at room temperature, which is 25°C the viscosity of water is 8.9×10^-4pa.s . We can find the viscosity of water at 4°C by cross multiplying.

Therefore;

25°C = 8.9×10^-4pa.s

4°C = U

Cross multiply

U25°C = 4°C × 8.9×10^-4pa.s

U25°C = 0.00356°C.pa.s

Therefore;

U = 0.00356°C.pa.s ÷ 25°C

U = 1.424×10^-4pa.s

Therefore at 4°C the viscosity of water in the pipe is 1.424×10^-4pa.s

STEP2: FIND Q

Imputing the values into poiseuille equation above.

Q = (3.142 × (1.5ft)^4 × 1pa) ÷ (128 × 1.424×10^-4pa.s × 5280ft)

Q = 15.906375pa.ft4 ÷ 96.239616pa.s.ft

Therefore;

Q = 0.16547887ft3/s

Approximately;

Q = 0.17ft3/s

6 0
3 years ago
The value of Rth is *
Vladimir79 [104]
Johnjjjjjjhhhhhhhhjjjjjjjjjjj
4 0
3 years ago
Consider CO at 500 K and 1000 kPa at an initial state that expands to a final pressure of 200 kPa in an isentropic manner. Repor
REY [17]

Answer:

T_2=315.69k

Explanation:

Initial Temperature T_1=500K

Initial Pressure P_1=1000kPa

Final Pressure P_2=200kPa

Generally the gas equation is mathematically given by

\frac{T_2}{T_1}=\frac{P_2}{P_1}^{\frac{n-1}{n}}

Where

n for CO=1.4

Therefore

\frac{T_2}{500}=\frac{200}{1000}^{\frac{1.4-1}{1.4}}

T_2=315.69k

7 0
3 years ago
Other questions:
  • What is the heights part of Maine?
    5·1 answer
  • The concrete canoe team does some analysis on their design and calculates that they need a compressive strength of 860 psi. They
    15·1 answer
  • What kind of analysis would be conducted to identify project costs?
    11·1 answer
  • Robots make computations and calculations using what part
    12·1 answer
  • Explain the proper uses of shop equipment. (explain to me how to use 3 pieces of shop equipment.)
    7·1 answer
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • Yellow wood glue will typically also work with metal, glass, and adhesives
    13·1 answer
  • The size of an engine is called the engine
    13·2 answers
  • How does science and technology address the problems of the society?
    6·2 answers
  • A common boundary-crossing problem for engineers is when their home country' values come into sharp contrast with the host count
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!