Answer:
a) The mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle is 23.6 cm².
Explanation:
a) The mass flow rate through the nozzle can be calculated with the following equation:

Where:
: is the initial velocity = 20 m/s
: is the inlet area of the nozzle = 60 cm²
: is the density of entrance = 2.21 kg/m³
Hence, the mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle can be found with the Continuity equation:



Therefore, the exit area of the nozzle is 23.6 cm².
I hope it helps you!
First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:
2as = v² - u²
Because the final velocity v is 0 in such cases
s = -u²/2a; because both u and a are downwards, the negative sign cancels
s = 14.5² / 2*9.81
s = 10.72 meters
Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m
We will use the formula
s = ut + 0.5at²
to find the time taken with the initial velocity u = 0.
55.72 = 0.5 * 9.81 * t²
t = 3.37 seconds
Answer:
I think the answer is C.
Explanation:
A primary source is a first hand account of an event while a secondary source is a retelling or second hand account meaning as many details will be prevalent.
Distance traveled by the ball is given by

here we know that
speed = 20 m/s
times = 0.25 s
now we have


so ball will travel 5 m distance in the given interval of time
Answer:
length of the ladder is 13.47 feet
base of wall to latter distance 6.10 feet
angle between ladder and the wall is 26.95°
Explanation:
given data
height h = 12 feet
angle 63°
to find out
length of the ladder ( L) and length of wall to ladder ( A) and angle between ladder and the wall
solution
we consider here angle between base of wall and floor is right angle
we apply here trigonometry rule that is
sin63 = h/L
put here value
L = 12 / sin63
L = 13.47
so length of the ladder is 13.47 feet
and
we can say
tan 63 = h / A
put here value
A = 12 / tan63
A = 6.10
so base of wall to latter distance 6.10 feet
and
we say here
tanθ = 6.10 / 12
θ = 26.95°
so angle between ladder and the wall is 26.95°