Answer:Ian is looking at cells using a microscope. He sees a nucleus and a large vacuole in the central area of a cell. What type of cell is he most likely looking at?
Explanation:
Ian is looking at cells using a microscope. He sees a nucleus and a large vacuole in the central area of a cell. What type of cell is he most likely looking at?
Answer:
\text{0.30 cm}^{3} \times \left (\dfrac{10^{-2}\text{ m}}{\text{1 cm}}\right )^{3} = 3.0 \times 10^{-7} \text{ m}^{3}
Explanation:
0.030 cm³ × ? = x m³
You want to convert cubic centimetres to cubic metres, so you multiply the cubic centimetres by a conversion factor.
For example, you know that centi means "× 10⁻²", so
1 cm = 10⁻² m
If we divide each side by 1 cm, we get 1 = (10⁻² m/1 cm).
If we divide each side by 10⁻² m, we get (1 cm/10⁻² m) = 1.
So, we can use either (10⁻² m/1 cm) or (1 cm/10⁻² m) as a conversion factor, because each fraction equals one.
We choose the former because it has the desired units on top.
The "cm" is cubed, so we must cube the conversion factor.
The calculation becomes

They are also called the noble gases or inert gases. They
are virtually unreactive towards other elements or compounds. They are found in
trace amounts in the atmosphere. Their elemental form at room temperature is
colorless, odorless and monatomic gases. They also have full octet of eight
valence electrons in their highest orbitals so they have a very little tendency
to gain or lose electrons to form ions or share electrons with other elements
in covalent bonds.
<u>Answer:</u> The atoms of every element on both the sides of the reaction must be same.
<u>Explanation:</u>
We are given a chemical equation and we need to balance it. Every equation follows Law of Conservation of mass.
This law states that in a chemical reaction, the number of atoms of each element must be same on both the sides of the equation.
For the given chemical equation:

On reactant side:
Number of zinc atoms = 1
Number of hydrogen atoms = 1
Number of chlorine atoms = 1
On product side:
Number of zinc atoms = 1
Number of hydrogen atoms = 2
Number of chlorine atoms = 2
As, the number of hydrogen and chlorine atoms on reactant and product side is not same, so we need to add a stoichiometric coefficient in-front of HCl on the reactant side. The balanced chemical equation becomes:
