3. <span>The second piston will experience the same force as compared with the first. This is because since the </span>pressure is the same everywhere inside the fluid system,<span> the force is proportional to the surface area. We are told that both the first and the second piston have the same surface area, therefore, they will both experience the same force/pressure.
4. </span>The situation is much the same as number 3 above, with the exception that the second piston is twenty times larger than the first. Again, since the pressure is the same everywhere inside the fluid system, the force is proportional to the surface area. We are told that the second piston is 20 times larger than the first, therefore, the larger piston will experience 20 times larger the force of the small one.
6. The answer is TRUE. The <span>hydraulic </span>braking system<span> of most cars makes use of a vacuum servo (or booster), which is located between the </span>brake pedal<span> and the master cylinder piston. </span><span>This vacuum servo amplifies the force applied </span><span>from the </span>brake pedal<span>.</span>
Answer:
69.74 N
Explanation:
We are given that
Weight of sled=49 N
Coefficient of kinetic friction
Weight of person=585 N
Total weight==mg=49+585=634 N
We know that
Force needed to pull the sled across the snow at constant speed,F=Kinetic friction

Where N= Normal=mg

Hence, the force is needed to pull the sled across the snow at constant speed=69.74 N
Question four bulbs A,B,C and D are connected in a circuit shown in the figure below, the letters X, Y and Z represent three switches. Which switch is used to operate switch A separately?
Answer: x
The correct answer to this is (A. Units Only).
It shows that there is a velocity of 35, but the units are missing.
Answer: The force constant k is 10600 kg/s^2
Step by step:
Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.
Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.
The total energy at the point h=2m is:

The total energy at the point h=0m is:

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:
