1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
3 years ago
5

The index of refraction of the first medium must be greater than the index of refraction of the second medium for total internal

reflection to occur.
Please select the best answer from the choices provided

T
F

please say true or false
Physics
1 answer:
laiz [17]3 years ago
4 0
I think it’s true but I’m not really sure
You might be interested in
Determine the largest intensity w of the uniform loading that can be applied to the frame without causing either the average nor
jeka94

.........................|||||||..............................

8 0
3 years ago
A student standing on the ground throws a ball straight up. The ball leaves the student's hand with a speed of 19.0 m/s when the
german

Answer: 4 s

Explanation:

Given

The ball leaves the hand of student with a speed of u=19\ m/s

When the hand is h=2.5\ m above the ground

Using the equation of motion we can write

h=ut+\dfrac{1}{2}at^2

Substitute the values

\Rightarrow 2.5=-19t+0.5\times 9.8t^2\\\Rightarrow 4.9t^2-19t-2.5=0\\\\\Rightarrow t=\dfrac{19\pm \sqrt{(-19)^2-4\times 4.9\times (-2.5)}}{2\times 19}\\\Rightarrow t=4.0049\quad [\text{Neglecting the negative value of }t]

Thus, the ball will take 4 s to hit the ground.

5 0
3 years ago
Which is an example of a solution?
vladimir1956 [14]

Answer:

C

Explanation:

plato

6 0
3 years ago
Scientists are making plans to put a probe in orbit around Earth. They want the probe to enter the orbit shown below.
iris [78.8K]

An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.

<h3>What is an orbit?</h3>

An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.

In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.

Read more on orbit here: brainly.com/question/18496962

#SPJ1

6 0
2 years ago
Read 2 more answers
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
3 years ago
Other questions:
  • A system uses 2380 I of energy to do work as 12,900 j of heat are added to the system. The change in internal energy of the syst
    13·1 answer
  • What units do physicists use to measure heat energy and electrical energy?
    13·1 answer
  • Two slits separated by a distance of d = 0.190 mm are located at a distance of D = 1.91 m from a screen. The screen is oriented
    10·1 answer
  • An electron has a velocity of 3.2 x 10^6 m/s. What is its’ momentum? (b) What is its’ wavelength? (c) What other objects/materia
    14·1 answer
  • PLEASE HELP!!!
    12·2 answers
  • How was Pluto discovered? Why did it take so long to find it?
    5·1 answer
  • Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel
    14·1 answer
  • A racecar begins at rest and accelerates to 25 m/s at a rate of 6.25 m/s2. What distance does the racecar cover?
    15·1 answer
  • A-Some resistors are labelled with a red band. This shows that their true resistance will be within 2, point, 0, percent,2.0% of
    7·1 answer
  • Fill in the blanks<br>i) Most liquid that conduct electricity are solution of—————and—————.<br>​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!