Answer is: the freezing point is 1.63°C and boiling point is 82.01°C.<span>.
1) n(</span><span>nonelectrolyte solute) = 0.656 mol.
</span>m(C₆H₆ - benzene) = 869 g ÷ 1000 g/kg.
m(C₆H₆) = 0.869 kg.<span>
b(solution) = n(</span>nonelectrolyte solute) ÷ m(C₆H₆).<span>
b(solution) = 0.656 mol ÷ 0.869 kg.
b(solution) = 0.754 mol/kg.
2) ΔT = Kf(benzene) · b(solution).
ΔT = 5.12°C/m · 0.754 m.
ΔT = 3.865°C.
Tf = 5.50°C - 3.865°C.
Tf = 1.63°C.
</span>
3) ΔTb = Kb(benzene) · b(solution).
ΔTb = 2.53°C/m · 0.754 m.
ΔTb = 1.91°C.
Tb = 80.1°C + 1.91°C.
Tb = 82.01°C.<span>
</span>
They are in the same period (horizontal)
Answer:
the result for the following are (a) P is directly proportional to n
(b) V is directly proportional to T (c) P is directly proportional to T (d) T is inversly proportional to V (e) P is inversely proportional to V
Reactants + Energy → Products
I guess this is the answer
You’re welcome ;)
Lewis Structure is drawn in following steps,
1) Calculate Number of Valence Electrons: # of Valence electrons in Mg = 2
# of Valence electrons in I = 7
# of Valence electrons in I = 7
---------
Total Valence electrons = 16
2) Draw Mg as a central atom surround it by two atoms of Iodine.3) Connect each Iodine atom to Mg, and subtract two electrons per bond. In this case we will subtract 4 electrons from total valence electrons. i.e.
Total Valence electrons 16
- Four electrons - 4
----------
12
4) Now start adding the remaining 12 electrons on more electronegative atoms i.e. Iodine.
The final lewis structure formed is as follow,