Answer: - 436.5 kJ.
Explanation:
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we divide the reaction by half then the
will also get halved and on reversing the reaction , the sign of enthlapy changes.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is -436.5 kJ.
Because you need to know how/ learn to try new things for (new experiments) and creativity will teach you different ways on how to do it.
Answer:
The formula for lithium acetate is CH3COOLi
Explanation:
The formula for lithium acetate is obtained by replacing the hydrogen atom bonding to the oxygen atom in acetic acid with Li as shown below:
CH3COOH + LiOH —> CH3COOLi + H2O
Answer:
The value of the equilibrium constant for the reaction A ⇒ B is Kc = 1.72 × 10³.
The value of the equilibrium constant for the reaction B ⇒ A is K'c = 5.81 × 10⁻⁴.
Explanation:
For the reaction A ⇒ B, the equilibrium constant (Kc) is equal to the forward rate constant (kf) divided by the reverse rate constant (ki).

If we consider the inverse reaction B ⇒ A, its equilibrium constant (K'c) is the inverse of the forward reaction equilibrium constant.
