Answer:
So to increase current of the circuit what you can do is :
1. Use conductor of low resistivity, ¶.
2. Use conductor of small length.
3. Use thick wire.
4. Decrease the temperature of the circuit.
5. If operating temprature is high than use semiconductor, because it have negative temprature coefficient.
6. Minimise the circuit losses.
Answer:
An object gets charged when it's atoms lose or gain an electron to become an ion. For example: ... This means that the fur loses it's electrons to the plastic rod and both objects are now charged. The fur is positively charged because it lost electrons and the rod is negatively charged because it gained electrons
Explanation:
comment how it helps
Answer:
B) 1.2 N, toward the center of the circle
Explanation:
The circumference of the circle is:
C = 2πr
C = 2π (0.70 m)
C = 4.40 m
So the velocity of the ball is:
v = C/t
v = 4.40 m / 0.60 s
v = 7.33 m/s
Sum of the forces in the radial direction:
∑F = ma
T = m v² / r
T = (0.015 kg) (7.33 m/s)² / (0.70 m)
T = 1.2 N
The tension force is 1.2 N towards the center of the circle.
Answer:
It depends on where the temperature is dropping, in which body so to speak. Generally, the temperature adapts to the two bodies, for example if a hot piece of metal meets a cold one, the two will continue until they are at an equal temperature, an intermediate temperature.
Answer:
frequency = 1475.45 Hz
Explanation:
given data
frequency f1 = 1215 Hz,
frequency f2 = 1265 Hz
police car moving vp = 25.0 m/s
solution
speed of sound u = 343 m / s
speed of the other car = v
when the police car is stationary
the frequency the other car receives is
f2 = f1 ×
................1
and
the frequency the police car receives is
f2 = f1 ×
..................2
now from equation 1 and 2


v = 4.77 m/s
and
frequency the other car receives is
f2 = f1 ×
......................3
and
the frequency the police car receives is
f2 = f1 ×
.......................4
now we get
f2 = f1 ×
f2 =
f2 = 1475.45 Hz