1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

So I'm a junior. I am currently taking AP Calc BC and AP Physics B.
As of now, I'm not sure if I should take AP Probability and Statistics or Differential Equations/Calc III next year. Also, I'm debating between taking AP Physics C or AP Chemistry.
Which ones do you think would look better on a transcript? I heard that Diffeq/CalcIII is harder than AP ProbStat, but ProbStat is an AP course which will be weighted heavier. Also, should I take Physics C since i've taken Physics B this year already?
Answer:
1470kgm/s
Explanation:
Given parameters:
Mass of the rock = 50kg
Time taken for the free fall = 3s
Unknown:
Change in momentum = ?
Solution:
The change in momentum will be difference between the ending momentum and finishing momentum.
Momentum is the product of mass and velocity
Momentum = mass x velocity
Initial momentum = 0, the velocity is 0
Final momentum = mass x final velocity
let us find the final velocity;
V = U + gt
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity = 9.8m/s²
t is the time
V = 0 + 9.8x3 = 29.4m/s
So;
Change in momentum = 50 x 29,4 = 1470kgm/s
When Sam presses the brake lever, a pair of rubber shoes clamps onto the metal inner rim of the front and back wheels. As the brake shoes rub against the wheels, friction is caused and the kinetic energy possessed by the vehicle is converted into heat which slows down the vehicle.