<span>79.75m/s .................................</span>
0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)
35 / 1.2 = 29.16
29.16 ÷ 100 = 0.29
Wave velocity in string:
The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.
Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.
Learn more about density here:
brainly.com/question/15164682
#SPJ4
Explanation:
For example, when a drum is struck, the flexible skin (sometimes called a membrane) of the drum vibrates. The compression and expansion of the air on either side of the vibrating membrane produces differences in air pressure. The pressure differences generate a sound wave that propagates outward from the drum surface.
Explanation:
Given parameters:
Initial velocity = 72km/hr
Final velocity = 0km/hr
Time taken = 25s
Unknown:
Acceleration = ?
Solution:
To solve this problem, convert km/hr to m/s;
1000m = 1km
3600s = 1hr
72km/hr;
1km/hr = 0.278m/s
72km/hr = 0.278 x 72 = 20.02m/s
Acceleration is the change in velocity divided by the time taken;
Acceleration =
Acceleration =
= -0.8m/s
The car is actually decelerating at a rate of 0.8m/s
To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>