Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>
Answer:
This is an example of a food chain
Explanation:
Think of it as a chain reaction. The grass feeds and nourishes the prairie dog. Upon eating the prairie dog, the coyote gets the nutrients from both the grass the prairie dog ate and from the prairie dog itself.
A. how fast something moves in a specific direction
Answer:
Density = 7.87 grams per mL
Explanation:
Density is given by the formula:

where
Z = effective number of atoms in one unit cell.
M = Molecular mass of the substance
a = edge length of unit cell
Na = Avogadro number = 6.022×10²³
In this case:
Z=2 as it is body-centered type unit cell
M = 56 g per mole for iron
a = 287 pm = 
Substituting the above values in the density formula we get:

Density of iron is 7.87 grams per mL.