First write the molecular equation with states:
(NH4)2S (aq) + 2AgNO3(aq) → Ag2S (s) + 2NH4NO3
Now write a full ionic equation by separating into ions all substances that dissociate: anything (s) (g) or (l) does not dissociate
2NH4 + (aq) + S 2-(aq) + 2Ag+ (aq) + 2NO3- (aq) → Ag2S(s) + 2NH4 + (aq) + 2NO3- (aq)
To write the NET IONIC equation, inspect the full ionic equation above and delete anything that appears on both sides of the → sign:
Net ionic equation:
S 2-(aq) + 2Ag + (aq) → Ag2S(s)
I believe that the answer is 11.5
Thermoplastic and thermosetting
thermoplastic:- they are easily molded and extruded into films, fibres and packaging.For eg. PVC
thermosetting:-they are hard and durable and can be used for aircraft parts,tires and auto parts .For eg. phenolic resins.
<em><u>HOPE</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>HELPS</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em><em><u>✌️</u></em>
The number following the name of the element is the number of subatomic particles inside the nucleus of the atom. This means that it is the mass number of the isotope. The average atomic mass of the element is the sum of the products of the percentage abundance and mass number of the naturally occurring isotopes.
Since, the average atomic mass of the hydrogen is nearest to 1 then, the most abundant isotope should be hydrogen-1.
X it by the molar mass of tungsten