1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
REY [17]
3 years ago
13

How does a positive ion differ from an uncharged atom of the same element?

Physics
2 answers:
uranmaximum [27]3 years ago
8 0

Atoms vs. Ions. Atoms are neutral; they contain the same number of protons as electrons. By definition, an ion is an electrically charged particle produced by either removing electrons from a neutral atom to give a positive ion or adding electrons to a neutral atom to give a negative ion.

Leto [7]3 years ago
8 0

Answer: The ion has fewer electrons.

Explanation:

You might be interested in
A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The
sergeinik [125]
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
3 0
3 years ago
Read 2 more answers
A 1500-kg car accelerates from rest to 25 m/s in 7.0 s. what is the average power delivered by the engine? (1 hp = 746 w)
AVprozaik [17]
The solution for this is:
Work done = force * distance = m*a*d and power = energy/time 
The vo=0 and vf = 25 m/s and t=7 sec. This gives... 
3.6 m/s^2 as acceleration and d=87.5 meters and thus F=ma= 5400 N. 
Energy = 5400*87.5 = 4.7E5 Joules (2 sig. figs) and Power = 67,500 Watts or 90 HP (2 sig. figs again). 
5 0
3 years ago
Read 2 more answers
A young's interference experiment is performed with blue-green laser light. the separation between the slits is 0.500 mm, and th
fgiga [73]
What class is this for?
3 0
4 years ago
WILL MARK BRAINLIEST IF RIGHT &amp; HAS EXPLINATION
Colt1911 [192]

Answer:

s= 64m I'm not 100% sure

Explanation: like 97.9%

7 0
3 years ago
Why was the idea of plate tectonics difficult for many scientists to accept for many years after it was first introduced?
pentagon [3]
I think the correct answer from the choices listed above is the second option. The <span> idea of plate tectonics was difficult for many scientists to accept for many years after it was first introduced because there </span><span>was no explanation yet for how it was happening. It was only to the recent times that these were proven. </span>
3 0
3 years ago
Other questions:
  • In a pulley system, a 5-newton weight is to be lifted 2 meters. The rope is pulled 10 meters. The input force is two newtons.
    12·2 answers
  • When the voltage is high, 100v, how does the filament appear?
    13·1 answer
  • Glacial episodes are an example of
    15·1 answer
  • Which type of energy in gasoline is transformed into mechanical energy in a motorcycle engine?
    6·2 answers
  • The hydrogen spectrum has a red line at 656 nm, and a blue line at 434 nm. What is the first order angular separation between th
    11·1 answer
  • What is the wavelength (in nm) of a photon emitted during transition from the n = 3 state to the n = 1 state in the H atom?
    6·1 answer
  • When the velocity of a moving object stays the same, it has a what speed
    8·1 answer
  • I’m stuck in B and D. which one is it?
    5·2 answers
  • How do make friends and other people like being around u also im lonely
    5·2 answers
  • In the image, not to scale, which phase of the moon would you observe from earth?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!