Answer:
Density, melting point. and magnetic properties
Explanation:
I can think of three ways.
1. Density
The density of Cu₂S is 5.6 g/cm³; that of CuS is 4.76 g/cm³.
It should be possible to distinguish these even with high school equipment.
2. Melting point
Cu₂S melts at 1130 °C (yellowish-red); CuS decomposes at 500 °C (faint red).
A Bunsen burner can easily reach these temperatures.
3. Magnetic properties
You can use a Gouy balance to measure the magnetic susceptibilities.
In Cu₂S the Cu⁺ ion has a d¹⁰ electron configuration, so all the electrons are paired and the solid is diamagnetic.
In CuS the Cu²⁺ ion has a d⁹ electron configuration, so all there is an unpaired electron and the solid is paramagnetic.
A sample of Cu₂S will be repelled by the magnetic field and show a decrease in weight.
A sample of CuS will be attracted by the magnetic field and show an increase in weight.
In the picture below, you can see the sample partially suspended between the poles of an electromagnet.
Answer:
the process of carrying light
Answer:
Explanation:
In this case, we can start with the reaction:
If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:
Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):
The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:
Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol = 48 g (therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:
I hope it helps!
Answer:
3Ca₍s₎ + 2FeCl₃ -------------------------------------------------------------> 3CaCl₂ + 2Fe₍s₎.
Explanation:
Iron(III) chloride is also known as Iron trichloride and it has the molar mass value of 162.2 g/mol and density of 2.9 g/cm³.
<em>The balanced equation for the chemical reaction between solid calcium and iron (III) chloride is given below as: </em>
<em />
3Ca₍s₎ + 2FeCl₃ -------------------------------------------------------------> 3CaCl₂ + 2Fe₍s₎.
This kind of chemical reaction is known as <em>single displacement reaction or single replacement reaction. </em>
The diatomic molecule H2 has an extremely low boiling point because only weak Vander waals forces are present between the atoms of hydrogen molecule. This weak inter-molecular forces are easily broken when heat is apply resulting in low boiling point.