Answer:
Wavelength = 10 m
Explanation:
Given:
Speed = 100 m
Frequency = 10 Hz = 10 
To find : Wavelength = ?
We know that the relationship between wavelength λ, frequency f and speed v is given by the equation
v = fλ
Therefore wavelength λ = v/f
= 100 m
/ 10 m
= 10 m
Hence wavelength = 10 m
Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
When a car is slowing down, it has a negative acceleration. Although it is not going a negative speed, it is decreasing in velocity, which is the definition of a negative acceleration.
Hope this helps!
Answer:
d = 10 inch
Explanation:
The farthest distance between the centers, is along the diagonal of the rectangle. Therefore, we need to calculate the diagonal of the rectangle, but counting the fact that we have both circles.
So if, one side is 12 inch, and the other is 14 inch, we can use the Pitagoras theorem which is:
d = √(a²) + (b)²
Where a and b, are the lenght of the rectangle, but without the lenght of the diameter of both circles.
With this, the expression is this:
d = √(14 - 6)² + (12 - 6)²
d = √64+36
d = √100
d = 10 inches