Answer:
B. the light will reach the front of the rocket at the same instant that it reaches the back of the rocket.
Explanation:
To an observer at rest in the rocket who can't see either sides of the rocket, the speed of the light is constant which means the distance to the front or the back is same and would appear to reach the rocket at the same time.
Although from the point of view of the person on the earth, the front of the rocket is travelling in opposite direction of the light while the back of the rocket is moving closer to the light. This means that the distance travelled by the light going forward will be longer going backwards. And since the speed of light is constant in both directions, the light will reach the back of the rocket before it reaches the front for the observer on the earth.
Answer:
For destructive interference phase difference is
where n∈ Whole numbers
Explanation:
For sinusoidal wave the interference affects the resultant intensity of the waves.
In the given example we have two waves interfering at a phase difference of
would lead to a constructive interference giving maximum amplitude at at the RMS value of the amplitude in resultant.
Also the effect is same as having a phase difference of
because after each 2π the waves repeat itself.
<em>In case of destructive interference the waves will be out of phase i.e. the amplitude vectors will be equally opposite in the direction at the same place on the same time as shown in figure.</em>
They have a phase difference of
or which is same as 
Generalizing to:
a phase difference of
where n∈ {W}
{W}= set of whole numbers.
Hey there!
The answer would be B. The sound moves from air to water.
Sound travels through different mediums. It goes fastest in solids, a little slower in liquids, and slowest in air. Sound is a very fast wave, but remember that mediums can differ that. In a vacuum space, there is no sound at all. (ex. outer space)
Hope this helps !
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
Answer:
check image
Explanation:
For any question related to newons law of motion first draw the free body diagram(FBD),