According to ideal gas equation, we know for 1 mole of gas: PV=RT
where P = pressure, T = temperature, R = gas constant, V= volume
If '1' and '2' indicates initial and final experimental conditions, we have

Given that: V1 = 100.0 kPa, T1 = 100.0 K, V1 = 2.0 m3, T2 = 400 K, P2 = 200.0 kPa
∴ on rearranging above eq., we get V2 =

∴ V2 = 4 m3
The amount of oxygen that are produced when 1.06 grams of potassium chlorate decompose completely is 0.64 grams.
<h3>What is the relation between mass & moles?</h3>
Relation between the mass and moles of any substance will be represented as:
- n = W/M, where
- W = given mass
- M = molar mass
Moles of potassium chlorate = 1.66g / 122.5g/mol = 0.0135mole
Given chemical reaction is:
2KClO₃ → 2KCl + 3O₂
From the stoichiometry of the reaction, it is clear that:
2 moles of KClO₃ = produces 3 moles of O₂
0.0135 moles of KClO₃ = produces (3/2)(0.0135)=0.02 moles of O₂
Mass of oxygen = (0.02mol)(32g/mol) = 0.64 g
Hence produced mass of oxygen is 0.64 grams.
To now more about mass & moles, visit the below link:
brainly.com/question/18983376
#SPJ1
Answer:
active transport requires energy and passive transport does not require energy
Explanation:
The density of the unknown metal, given the data is 1.67 g/mL
<h3>What is density? </h3>
The density of a substance is simply defined as the mass of the subtance per unit volume of the substance. Mathematically, it can be expressed as
Density = mass / volume
With the above formula, we can determine the density of the unknown metal. Details below:
<h3>How to determine the density </h3>
- Mass of unknown metal = 20 - 0 = 20 g
- Volume of unknown metal = 12 - 0 = 12 mL
- Density of unknown metal =?
Density = mass / volume
Density of unknown metal = 20 / 12
Density of unknown metal = 1.67 g/mL
Thus, the density of unknown metal is 1.67 g/mL
Learn more about density:
brainly.com/question/952755
#SPJ1