Answer:

Explanation:
Let's start by writing the equations of the forces along the two directions:
- Vertical:

where
N is the normal reaction
is the angle between the road and the horizontal
(mg) is the weight of the car, with m being its mass and g the acceleration of gravity
- Horizontal:

where
v is the speed of the car
r is the radius of the turn
Dividing the 2nd equation by the 1st one, we get:

In this problem:
(radius of the turn)
is the speed

Substituting, we find:

Explanation:
I = 120/30=2A
Voltage across R3= current × resistance
= 2A × 15 ohm = 30 volt
<u>Given data</u>
Determine Internal energy of gas N₂, (U) = ?
Temperature (T) = 25° C
= 25+273 = 298 K,
Gas constant (R) = 8.31 J/ mol-K ,
Number of moles (n) = 3 moles,
<u>Internal energy of N₂ </u>
Internal energy is a property of thermodynamics, the concept of internal energy can be understand by ideal gas. For example N₂, the observations for oxygen and nitrogen at atmospheric temperatures, f=5, (where f is translational degrees of freedom).
So per kilogram of gas,
The internal energy (U) = 5/2 .n.R.T
= (5/2) × 3 × 8.31 ×298
= 18572.85 J
<em>The internal energy of the N₂ is 18,572.85 J and it is approximately equal to 18,600 J given in the option B.</em>
It would go slower there needs to be more gravity to go faster