1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinil7 [7]
4 years ago
13

The potential difference between A and B is 5.0 V. A proton starts from rest at A. When it reaches B what is its kinetic energy?

(e = 1.60 x 10^-19 C)
Physics
1 answer:
Aleksandr [31]4 years ago
3 0

Answer:

total kinetic energy is 8 × 10^{-19} J

Explanation:

given data

potential difference = 5 V

e = 1.60 × 10^{-19} C

to find out

what is kinetic energy

solution

we will apply here conservation of energy that is

change in potential energy is equal to change in kinetic energy

so

change potential energy is e × potential difference

change potential energy =  1.60 × 10^{-19} × 5

change potential energy = 8 × 10^{-19} J

so change in kinetic energy  = 8 × 10^{-19} J

and we know proton start from rest that mean ( kinetic energy is 0 ) so

change in KE is total KE

total kinetic energy is 8 × 10^{-19} J

You might be interested in
You are taking an image of a patient who is in extreme discomfort while participating in the CT scanning process. Which of the f
brilliants [131]

Answer:

Interpersonal skills

Explanation:

4 0
3 years ago
The acceleration vector of a particle in projectile motion ________.
Alex73 [517]

Answer:

Points downward, and its magnitude is 9.8 m/s^2

Explanation:

The motion of a projectile consists of two independent motions:

- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.

- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.

The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.

4 0
3 years ago
Subduction occurs at which of the following tectonic plate boundaries?
exis [7]
When two tectonic plates collide and form a converging plate boundry, normally one of the plates will slide underneath the other and that is when Subduction occurs.
5 0
3 years ago
If you hadto throw one of the fourtoys above, which one would take the MOST force to throw
ohaa [14]

Answer:

that one

Explanation:

cause its heavier

7 0
3 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • What part of the water is affected by a wave in deep water
    13·1 answer
  • I really need an answer to this today! Please help!
    13·1 answer
  • In order for a reaction to begin, what is required?
    5·2 answers
  • For an object moving in a circular path,which quantity is always changing?<br>​
    8·1 answer
  • Carter pushes a bag full of basketball jerseys across the gym floor. The he pushes with a constant force of 21 newtons. If he pu
    8·2 answers
  • The Cosmoclock 21 Ferris wheel in Yokohama City, Japan, has a diameter of 100 m. Its name comes from its 60 arms, each of which
    9·1 answer
  • The Gulf Stream off the east coast of the United States can flow at a rapid 3.3 m/s to the north. A ship in this current has a c
    9·1 answer
  • AM radio frequencies range between 550 kHz (kilohertz) and 1600 kHz and travel at the same speed, 3.0 x 108 m/s. What is the wav
    8·2 answers
  • A car starts from rest at a stop sign. It accelerates at 4.0 m/s^2 for 3 seconds, coasts for 2 s, and then slows down at a rate
    9·2 answers
  • What causes an electrical current in a wire? Question 1 options: Electric fields cause atoms to move in a wire Electrons build u
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!