1. alpha particle
alpha particles are positively charged helium nuclei with weak penetrating power
Given :
The distance between a point charge and a neutral atom and is multiplied by a factor of 5.
To Find :
By what factor does the force on the neutral atom by the point charge change.
Solution :
We know, electrostatic force between two object is directly proportional to product of charge and inversely proportional to distance between them.
Now, charge in neutral atom is 0 C.
So, the electrostatic force between two of them is also 0 N.
Therefore, by changing distance between the charge the forces did no change ( it remains zero).
Answer:
![m_{precipitated}=24.8g](https://tex.z-dn.net/?f=m_%7Bprecipitated%7D%3D24.8g)
Explanation:
Hello,
In this case, since at 60 °C, 108 grams of ammonium bromide are completely dissolved in 100 grams of water for a saturated solution, once it is cooled to 30 °C, wherein only 83.2 grams are completely dissolved in 100 grams of water, the following mass will precipitate:
![m_{precipitated}=108g-83.2g\\\\m_{precipitated}=24.8g](https://tex.z-dn.net/?f=m_%7Bprecipitated%7D%3D108g-83.2g%5C%5C%5C%5Cm_%7Bprecipitated%7D%3D24.8g)
Best regards.
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).