Question 25 Answer: Destructive interference occurs.
<span>Question 26Answer: The waves are closer together (as they move) because the object is moving toward you.</span>
<span />
The answers is an electrical force.
Under normal conditions, atoms interact with each other via electrons that are furthest away from the nucleus. These electrons from the what is called the outer shell of the atom, electrons from the outer shell that can participate in chemical reactions are called valence electrons.
This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
Height at any time 'T' after the drop =
(initial height) +
(initial velocity) x (T) +
(1/2) x (acceleration) x (T²) .
For the balloon problem ...
-- We have both directions involved here, so we have to define them:
Upward = the positive direction
Initial height = +150 m
Initial velocity = + 3 m/s
Downward = the negative direction
Acceleration (of gravity) = -9.8 m/s²
Height when the bag hits the ground = 0 .
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
0 = (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)
-4.9 T² + 3T + 150 = 0
Use the quadratic equation:
T = (-1/9.8) [ -3 plus or minus √(9 + 2940) ]
= (-1/9.8) [ -3 plus or minus 54.305 ]
= (-1/9.8) [ 51.305 or -57.305 ]
T = -5.235 seconds or 5.847 seconds .
(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)
Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
H'(t) = v₀ + a T
The extremes of 'H' (height) correspond to points where h'(t) = 0 .
Set v₀ + a T = 0
+3 - 9.8 T = 0
Add 9.8 to each side: 3 = 9.8 T
Divide each side by 9.8 : T = 0.306 second
That's the time after the drop when the bag reaches its max altitude.
Oh gosh ! I could have found that without differentiating.
- The bag is released while moving UP at 3 m/s .
- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
(3 / 9.8) = 0.306 second .
At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) = 1.5 m/s .
Distance climbed during that time = (average speed) x (time)
= (1.5 m/s) x (0.306 sec)
= 0.459 meter (hardly any at all)
But it was already up there at 150 m when it was released.
It climbs an additional 0.459 meter, topping out at 150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely 5.847 seconds after its release.
We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.
I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work. The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.
Answer:
a) Tc = 750 [N] ;b) See the explanation below.
Explanation:
To solve this problem, we first need a graphical explanation of this, as well as knowing the corresponding questions. Therefore, a search was carried out in google, in the attached image we will find a graphical description of the problem.
b)
The solution of this type of problem corresponds to the use of Newton's third law, applying static which tells us that the sum of the forces in a system in equilibrium without movement must be equal to zero.
a)
In this way we can find by means of a sum of forces on the y axis equal to zero:
- 850 - 450 + 550 + Tc = 0
Tc = 750 [N]
Dominant genes and recessive genes are both given to a parents offspring. However, not both can be expressed causing the difference of dominant and recessive. Dominant genes are more likely to be expressed and recessive genes are more likely to be repressed.