I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.
Answer:
this is a difficult question but I will try to answer it answer for this is 3220 a + b b u s y d l new
Answer:
For example, when a car travels at a constant speed, the driving force from the engine is balanced by resistive forces such as air resistance and friction in the car's moving parts. The resultant force on the car is zero.
Explanation:
hope this helps
Answer:
(a) work required to lift the object is 1029 J
(b) the gravitational potential energy gained by this object is 1029 J
Explanation:
Given;
mass of the object, m = 35 kg
height through which the object was lifted, h = 3 m
(a) work required to lift the object
W = F x d
W = (mg) x h
W = 35 x 9.8 x 3
W = 1029 J
(b) the gravitational potential energy gained by this object is calculated as;
ΔP.E = Pf - Pi
where;
Pi is the initial gravitational potential energy, at initial height (hi = 0)
ΔP.E = (35 x 9.8 x 3) - (35 x 9.8 x 0)
ΔP.E = 1029 J