That's because the first and last carbon atoms cannot be branched to form an isomer . Therefore only the three middle carbon atoms can form isomers.
<span> They </span>do<span> not </span>respond to stimuli<span>, they </span>do<span> not grow, they </span>do<span> not </span>do<span> any of the things we normally associate with life.
</span>
Answer:
Volume will goes to increase.
Explanation:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
So when the temperature goes to increase the volume of gas also increase. Higher temperature increase the kinetic energy and molecules move randomly every where in given space so volume increase.
Now we will put the suppose values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 4.5 L × 348 K / 298 k
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Hence prove that volume increase by increasing the temperature.
Diffusion is the process of a substance spreading out to evenly fill its container or environment. Rate of diffusion of a gas is inversely proportional to the molar mass of the gas.

Lighter(lower) the molar mass of the gas , faster will be its rate of diffusion and heavier (higher) the molar mass of the gas , slower will be its rate of diffusion.
We have to arrange the given gases from slowest rate of diffusion to fastest rate of diffusion that means we need to arrange gases from higher molar mass to lower molar mass.
Molar mass of given gases are :
Cl = 35.5 g/mol
Xe = 131.29 g/mol
He = 4.00 g/mol
N = 14.00 g/mol
So correct order for slowest rate of diffusion (highest molar mass) to fastest rate of diffusion (lowest molar mass) is :
Xe , Cl , N , He
Xe having the highest molar mass will have the slowest rate of diffusion and He with lowest molar mass will have the fastest rate of diffusion, so option 'c' is correct.
Note : Slowest rate of diffusion = High Molar Mass
Fastest rate of diffusion = Low Molar Mass
Answer: The charge on the plates are 88.4 picafarad
Explanation:The equation used in measuring charge in a plate is given as:
C=Q/V =E A/D
Where E= dielectric content
A= Area of plates
d= distance between plates
Using dielectric constant for Air=8.84×10-12F/m
A=100cm2=0.01m2
d=10mm=0.001m
C= 8.84×10-12×0.01/0.001
C= 88.4 picafarad