1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
4 years ago
11

Log mean temperature difference, FT applied to heat exchangers. Problem 4.9-2, p351. Oil flowing at the rate of 5.04 kg/s (Cpm =

2.09 kJ/kg.K) is cooled in a 1-2 heat exchanger from 366.5 K to 344.3 K by 2.02 kg/s of water entering at 283.2 K. The overall heat transfer coefficient U0, is 340 W/m^2 .K. Calculate the area required. (Hint: a heat balance must first be made to determine the outlet water temperature.)
Engineering
1 answer:
bazaltina [42]4 years ago
5 0

Answer:

the Area required is 12m2

Explanation:

A heat exchanger is a mechanical device used to transfer heat from one fluid to another by heating or cooling one of the fluids with the help of the other. They are of different types which include;

Shell and Tube heat exchangers, that categorically involves large number of small tubes embedded within a cylindrical shell. It may be

1 shell 1 tube pass (1-1 exchanger) which means the heat enters through one end and travels on a straight line to exit the other end.

1 shell multi-tube pass (1-2,1-4,1-6,1-8 etc exchangers) meaning the heat enters through one end, and travels in a directed path to exit a different end.

To calculate the quantity of heat exchanged for both cases, we use the same formula

Q=UA∆Tlm

Where Q= Rate of Quantity of heat exchanged

U= Heat transfer coefficient

A=Area of tube

Tlm= Logarithm mean temperature difference which signifies the average logarithm of the difference in temperature between the hot region and the cold region of both ends of the pipe exchanger.

The major difference is that,

For 1-1 exchanger, Tlm=Tm= [(Thi-Tco)-(Tho-Tci)]/ln[(Thi-Tco)/(Tho-Tci)]

But

For 1-2, 1-4, 1-6 etc exchangers, Tlm=Tm×F

Where F is called the correction factor, and it is the point on the graph (of correction factor (F) plotted against Log mean temperature difference (Tlm) for cross-flow exchangers) where the Y value and Z value intercepts.

The Y and Z values can be calculated using the Formulas below

Y=[(Tco-Tci)/(Thi-Tci)] and Z=[(Thi-Tho)/(Tco-Tci)]

For the question above, to find the Area of tube, we need to calculate the rate of quantity of heat exchanged (Q), then use the value to find the outlet temperature of cold fluid (Tco), then find the Log mean temperature difference which will require F,Y,Z and Tm, then use the results gotten to compute the Area.

Given;

Mass flow rate of hot fluid (oil), Mh=5.04kg/s

Specific heat of hot fluid, Cph=2.09kj/kg.k

Inlet temperature of hot fluid, Thi=366.5K

Mass flow rate of cold fluid (water), Mc=2.02kg/s

Specific heat of cold fluid, Cpc=4.186kj/kg.k

Inlet temperature of cold fluid, Tci=283.2K

Outlet temperature of hot fluid, Tho=344.3k

Outlet temperature of cold fluid = Tco

Overall heat transfer coefficient, U= 340W/m2.k

Area of tube =A

First we have to find the quantity of heat exchanged (Q). We use,

Qh=∆Hh=MhCph(Tho-Thi)

=5.04×2.09 × (344.3-366.5)

=-233.85kj/s

The quantity of heat lost by the hot fluid Qh is equal to the quantity of heat gained by the cold Fluid Qc.

Therefore;

Qh=Qc

Qc=233.85kj/s

To calculate Tco, we use

Qc=∆Hc=McCpc(Tco-Tci)

233.85=2.02×4.186×(Tco-283.2)

233.85=8.45572Tco-2394.66

Tco=(233.85+2394.66)/8.45572=310.86k

Next, we use the formula Q=UA∆Tlm to get our A, but for 1-2 exchanger,

Tlm=Tm×F

So we find F using Y and Z values

Y=(Tco-Tci)/(Thi-Tci)=(310.86-283.2)/(366.5-283.2)=0.3321

Z=(Thi-Tho)/(Tco-Tci)=(366.5-344.3)/(310.86-283.2)=0.8026

At point Y=0.3321 and point Z=0.8026, we have an intercept of F=0.975

Also,

Tm=[(Thi-Tco)-(Tho-Tci)]/Ln[(Thi-Tco)/(Tho-Tci)]

=[(366.5-310.86)-(344.3-283.2)]/ln[(366.5-310.86)/(344.3-283.2)]

=(-5.46)/(-0.0936)=58.33k

∆Tlm=Tm×F

=58.33×0.975

=56.872k

Now to get A, we input all calculated values into our general formula;

Q=233.85Kj= (233.85×1000)j

Q=UA∆Tlm

233.85×1000=340×A×56.872

A=(233.85×1000)/(340×56.872)=12m2

Therefore, the Area required is 12m2.

You might be interested in
PLEASE ANSWER FOR DRIVERS ED! WILL GIVE BRAINLIEST
Zepler [3.9K]

Answer:D

Explanation:

Google it it’s 100 ft

8 0
3 years ago
A steel rod, which is free to move, has a length of 200 mm and a diameter of 20 mm at a temperature of 15oC. If the rod is heate
kherson [118]

Explanation:

thermal expansion ∝L = (δL/δT)÷L ----(1)

δL = L∝L + δT ----(2)

we have δL = 12.5x10⁻⁶

length l = 200mm

δT = 115°c - 15°c = 100°c

putting these values into equation 1, we have

δL = 200*12.5X10⁻⁶x100

= 0.25 MM

L₂ = L + δ L

= 200 + 0.25

L₂ = 200.25mm

12.5X10⁻⁶ *115-15 * 20

= 0.025

20 +0.025

D₂ = 20.025

as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0

3 0
3 years ago
3.
Andreyy89

Answer:

7

Explanation:

5 + 2 = 7

4 0
3 years ago
‏What is the potential energy in joules of a 12 kg ( mass ) at 25 m above a datum plane ?
Virty [35]

Answer:

E = 2940 J

Explanation:

It is given that,

Mass, m = 12 kg

Position at which the object is placed, h = 25 m

We need to find the potential energy of the mass. It is given by the formula as follows :

E = mgh

g is acceleration due to gravity

E=12\times 9.8\times 25\\\\E=2940\ J

So, the potential energy of the mass is 2940 J.

3 0
3 years ago
The function below takes a single parameter, a list of numbers called number_list. Complete the function to return a string of t
makkiz [27]

Answer:

The solution code is written in Python:

  1. def convertCSV(number_list):
  2.    str_list = []
  3.    for num in number_list:
  4.        str_list.append(str(num))
  5.    
  6.    return ",".join(str_list)
  7. result = convertCSV([22,33,44])
  8. print(result)

Explanation:

Firstly, create a function "convertCSV" with one parameter "number_list". (Line 1)

Next, create an empty list and assign it to a new variable <em>str_list</em>. (Line 2)

Use for-loop to iterate through all the number in the <em>number_list</em>.(Line 4). Within the loop, each number is converted to a string using the Python built-in function <em>str() </em>and then use the list append method to add the string version of the number to <em>str_list</em>.

Use Python string<em> join() </em>method to join all the elements in the str_list as a single string. The "," is used as a separator between the elements (Line 7) . At the end return the string as an output.

We can test the function by calling the function and passing [22,33,34] as an argument and we shall see "22,33,44" is printed as an output. (Line 9 - 10)

6 0
3 years ago
Other questions:
  • The _____ is a voice for small business.
    7·1 answer
  • Ame:<br> 7. A step-down transformer reduces the primary current.<br> True or false
    8·2 answers
  • A heat pump and a refrigerator are operating between the same two thermal reservoirs. Which one has a higher COP?
    10·1 answer
  • Nitrogen enters a steady-flow heat exchanger at 150 kPa, 10°C, and 100 m/s, and it receives heat as it flows through it. Nitroge
    15·1 answer
  • Is it possible to interface an IC with a different technology such as TTL to HCS12 ports? What are the conditions in terms of el
    10·1 answer
  • Michelle is the general manager of a power plant. This morning, she will meet with city officials to discuss environmental issue
    5·1 answer
  • List two possible reasons the engine oil could have a strong gasoline smell
    15·1 answer
  • A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as
    5·1 answer
  • The three construction crafts that require a MINIMUM of a 4-year college degree are
    11·1 answer
  • 8. What are used by the project architect to depict different building systems and to show how they correlate to one anothe
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!