1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
4 years ago
11

Log mean temperature difference, FT applied to heat exchangers. Problem 4.9-2, p351. Oil flowing at the rate of 5.04 kg/s (Cpm =

2.09 kJ/kg.K) is cooled in a 1-2 heat exchanger from 366.5 K to 344.3 K by 2.02 kg/s of water entering at 283.2 K. The overall heat transfer coefficient U0, is 340 W/m^2 .K. Calculate the area required. (Hint: a heat balance must first be made to determine the outlet water temperature.)
Engineering
1 answer:
bazaltina [42]4 years ago
5 0

Answer:

the Area required is 12m2

Explanation:

A heat exchanger is a mechanical device used to transfer heat from one fluid to another by heating or cooling one of the fluids with the help of the other. They are of different types which include;

Shell and Tube heat exchangers, that categorically involves large number of small tubes embedded within a cylindrical shell. It may be

1 shell 1 tube pass (1-1 exchanger) which means the heat enters through one end and travels on a straight line to exit the other end.

1 shell multi-tube pass (1-2,1-4,1-6,1-8 etc exchangers) meaning the heat enters through one end, and travels in a directed path to exit a different end.

To calculate the quantity of heat exchanged for both cases, we use the same formula

Q=UA∆Tlm

Where Q= Rate of Quantity of heat exchanged

U= Heat transfer coefficient

A=Area of tube

Tlm= Logarithm mean temperature difference which signifies the average logarithm of the difference in temperature between the hot region and the cold region of both ends of the pipe exchanger.

The major difference is that,

For 1-1 exchanger, Tlm=Tm= [(Thi-Tco)-(Tho-Tci)]/ln[(Thi-Tco)/(Tho-Tci)]

But

For 1-2, 1-4, 1-6 etc exchangers, Tlm=Tm×F

Where F is called the correction factor, and it is the point on the graph (of correction factor (F) plotted against Log mean temperature difference (Tlm) for cross-flow exchangers) where the Y value and Z value intercepts.

The Y and Z values can be calculated using the Formulas below

Y=[(Tco-Tci)/(Thi-Tci)] and Z=[(Thi-Tho)/(Tco-Tci)]

For the question above, to find the Area of tube, we need to calculate the rate of quantity of heat exchanged (Q), then use the value to find the outlet temperature of cold fluid (Tco), then find the Log mean temperature difference which will require F,Y,Z and Tm, then use the results gotten to compute the Area.

Given;

Mass flow rate of hot fluid (oil), Mh=5.04kg/s

Specific heat of hot fluid, Cph=2.09kj/kg.k

Inlet temperature of hot fluid, Thi=366.5K

Mass flow rate of cold fluid (water), Mc=2.02kg/s

Specific heat of cold fluid, Cpc=4.186kj/kg.k

Inlet temperature of cold fluid, Tci=283.2K

Outlet temperature of hot fluid, Tho=344.3k

Outlet temperature of cold fluid = Tco

Overall heat transfer coefficient, U= 340W/m2.k

Area of tube =A

First we have to find the quantity of heat exchanged (Q). We use,

Qh=∆Hh=MhCph(Tho-Thi)

=5.04×2.09 × (344.3-366.5)

=-233.85kj/s

The quantity of heat lost by the hot fluid Qh is equal to the quantity of heat gained by the cold Fluid Qc.

Therefore;

Qh=Qc

Qc=233.85kj/s

To calculate Tco, we use

Qc=∆Hc=McCpc(Tco-Tci)

233.85=2.02×4.186×(Tco-283.2)

233.85=8.45572Tco-2394.66

Tco=(233.85+2394.66)/8.45572=310.86k

Next, we use the formula Q=UA∆Tlm to get our A, but for 1-2 exchanger,

Tlm=Tm×F

So we find F using Y and Z values

Y=(Tco-Tci)/(Thi-Tci)=(310.86-283.2)/(366.5-283.2)=0.3321

Z=(Thi-Tho)/(Tco-Tci)=(366.5-344.3)/(310.86-283.2)=0.8026

At point Y=0.3321 and point Z=0.8026, we have an intercept of F=0.975

Also,

Tm=[(Thi-Tco)-(Tho-Tci)]/Ln[(Thi-Tco)/(Tho-Tci)]

=[(366.5-310.86)-(344.3-283.2)]/ln[(366.5-310.86)/(344.3-283.2)]

=(-5.46)/(-0.0936)=58.33k

∆Tlm=Tm×F

=58.33×0.975

=56.872k

Now to get A, we input all calculated values into our general formula;

Q=233.85Kj= (233.85×1000)j

Q=UA∆Tlm

233.85×1000=340×A×56.872

A=(233.85×1000)/(340×56.872)=12m2

Therefore, the Area required is 12m2.

You might be interested in
Who here is a genius?
Pachacha [2.7K]

Answer:

im kinda smart  whyy?

Explanation:

3 0
3 years ago
Read 2 more answers
The purification of hydrogen gas is possible by diffusion through a thin palladium sheet. Calculate the number of kilograms of h
diamong [38]

Answer:

M=0.0411 kg/h or 4.1*10^{-2} kg/h

Explanation:

We have to combine the following formula to find the mass yield:

M=JAt

M=-DAt(ΔC/Δx)

The diffusion coefficient : D=6.0*10^{-8} m/s^{2}

The area : A=0.25 m^{2}

Time : t=3600 s/h

ΔC: (0.64-3.0)kg/m^{3}

Δx: 3.1*10^{-3}m

Now substitute the  values

M=-DAt(ΔC/Δx)

M=-(6.0*10^{-8} m/s^{2})(0.25 m^{2})(3600 s/h)[(0.64-3.0kg/m^{3})(3.1*10^{-3}m)]

M=0.0411 kg/h or 4.1*10^{-2} kg/h

8 0
3 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
Question text
lisabon 2012 [21]

Answer:

That's a really nice question sadly I don't know the answer I'm replying to you cuz I'm tryna get points so... Sorry

3 0
4 years ago
Q7. A cylindrical rod of 1040 steel originally 15.2 mm (0.60 in.) in diameter is to be cold worked by drawing; the circular cros
umka2103 [35]

Answer:

11.2mm or 0.45in

Explanation:

The percent cold work, attendant tensile strength and ductility if drawing is carried out without interruption is given by the equation you will find in the attached file.

Please go through the attached file for a step by step solution to this question.

5 0
3 years ago
Other questions:
  • Indicates the design of the building and<br> adjoining areas
    12·1 answer
  • Machine movement can be divided into what two main categories?
    11·2 answers
  • a vehicle is in her repair with a complaint at for heating output during testing and diagnosing air is found to be trapped in th
    15·1 answer
  • You will be observing laminar-turbulent transition for room temperature (about 20°C) water flowing in a 0.602"" ID pipe (Schedul
    8·1 answer
  • A water tower that is 90 ft high provides water to a residential subdivision. The water main from the tower to the subdivision i
    10·1 answer
  • A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
    9·2 answers
  • Underground water is to be pumped by a 78% efficient 5- kW submerged pump to a pool whose free surface is 30 m above the undergr
    10·1 answer
  • What is the command this line of code is telling the robot?
    13·2 answers
  • Many vehicles have indicator lights telling you when your
    13·1 answer
  • Drivers education :Anything that draws your mind off driving is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!