Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation:
Answer:
False
Explanation:
Sievert is the unit of dose equivalent
Answer:
0.2687 approximately 0.27
Explanation:
Diameter = 0.320
Speed = 40.0 rev/min
We are required to find coefficient of static friction between friction and button
The radius can be calculated as
0.320/2
= 0.160m
Then we have the rotational speed w = 40rev/min x 2pi/60
= 4.19 rad/s
umg = mrw²
u = mrw²/mg
u = rw²/g -------(1)
g = 9.8
When we put values into equation 1
0.150m x 4.19² / 9.8
= 0.150m x 17.5561 /9.8
= 0.2689
This is approximately 0.27
The work done will be equal to the potential energy of the piano at the final position
P.E=m.g.h
.consider the plank the hypotenuse of the right triangle formed with the ground
.let x be the angle with the ground=31.6°
.h be the side opposite to the angle x (h is the final height of the piano)
.let L be the length of the plank
sinx=opposite side / hypotenuse
= h/L
then h=L.sinx=3.49×sin31.6°=0.638m
weight w=m.g
m=w/g=3858/10=385.8kg
Consider Gravity g=10m/s2
then P.E.=m.g.h=385.8kg×10×0.638=2461.404J
then Work W=P.E.=2451.404J
A, convection, is your answer