I think it’s c but I could be wrong
The metabolic process that takes place in an organism's cells is called cellular respiration. Both photosynthesis and cellular respiration contribute carbon dioxide to the biogeochemical cycle.
<u>What is biogeochemical cycle?</u>
The mechanism that distributes and circulates abiotic chemical elements among the various realms of the planet is known as the biogeochemical cycle. The carbon, water, nitrogen, phosphorus cycle, etc. are all included.
Carbon dioxide is released during cellular respiration as a waste gas into the atmosphere, where it is then taken by plants to produce energy, which is then utilized by the organism, which then releases more carbon dioxide. The ecological chain's carbon cycle continues from the producer to the consumer.
Therefore, the carbon cycle is influenced by photosynthesis and cellular respiration.
Learn more about the biogeochemical cycle here:
brainly.com/question/27786512
#SPJ4
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1
Answer: Isoelectronic means having the same numbers of electrons or the same electronic structure.
Explanation:
PH scale is used to determine how acidic or basic a solution is.
we have been given the hydrogen ion concentration. Using this we can calculate pH,
pH = - log[H⁺]
pH = - log (1 x 10⁻¹ M)
pH = 1
using pH can calculate pOH
pH + pOH = 14
pOH = 14 - 1
pOH = 13
using pOH we can calculate the hydroxide ion concentration
pOH = - log [OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 10⁻¹³ M
hydroxide ion concentration is 10⁻¹³ M